scholarly journals Finite Element Analysis of Glass Fiber-Reinforced Polyamide Engine Oil Pan Subjected to Localized Low Velocity Impact from Flying Projectiles

2012 ◽  
Vol 83 (10) ◽  
pp. 957-963 ◽  
Author(s):  
Zakaria Mouti ◽  
Keith Westwood ◽  
Darren Long ◽  
James Njuguna
2016 ◽  
Vol 87 (16) ◽  
pp. 1938-1952 ◽  
Author(s):  
Chao Zhi ◽  
Hairu Long ◽  
Fengxin Sun

The aim of this research was to investigate the low-velocity impact properties of syntactic foam reinforced by warp-knitted spacer fabric (SF-WKSF). In order to discuss the effect of warp-knitted spacer fabric (WKSF) and hollow glass microballoon parameters on the impact performance of composites, eight different kinds of SF-WKSF samples were fabricated, including different WKSF surface layer structures, different spacer yarn diameters and inclination-angles, different microballoon types and contents. The low-velocity impact tests were carried out on an INSTRON 9250 HV drop-weight impact tester and the impact resistances of SF-WKSF were analyzed; it is indicated that most SF-WKSF specimens show higher peak impact force and major damage energy compared to neat syntactic foam. The results also demonstrate that the surface layer structure, inclination-angle of the spacer yarn and the volume fraction and type of microballoon have a significant influence on the low-impact performance of SF-WKSF. In addition, a finite element analysis finished with ANSYS/LS-DYNA and LS-PrePost was used to simulate the impact behaviors of SF-WKSF. The results of the finite element analysis are in agreement with the experimental results.


2018 ◽  
Vol 28 (3) ◽  
pp. 271-285 ◽  
Author(s):  
Furqan Ahmad ◽  
Fethi Abbassi ◽  
Myung Kyun Park ◽  
Jae-Wook Jung ◽  
Jung-Wuk Hong

Sign in / Sign up

Export Citation Format

Share Document