Simultaneous optimal design of the structural model for the semi-active control design and the model-based semi-active control

2013 ◽  
Vol 21 (4) ◽  
pp. 522-541 ◽  
Author(s):  
Kazuhiko Hiramoto ◽  
Taichi Matsuoka ◽  
Katsuaki Sunakoda
1998 ◽  
Vol 132 (1-6) ◽  
pp. 99-138 ◽  
Author(s):  
J. P. HATHOUT ◽  
A. M. ANNASWAMY ◽  
M. FLEIFIL ◽  
A. F. GHONIEM

Author(s):  
Kazuhiko Hiramoto ◽  
Taichi Matsuoka ◽  
Akira Fukukita ◽  
Katsuaki Sunakoda

We address a simultaneous optimal design problem of a semi-active control law and design parameters in a vibration control device for civil structures. The Vibration Control Device (VCD) that is being developed by authors is used as the semi-active control device in the present paper. The VCD is composed of a mechanism of a ball screw with a flywheel for the inertial resistance force and an electric motor with an electric circuit for the damping resistance force. A new bang-bang type semi-active control law referred to as Inverse Lyapunov Approach is proposed as the semi-active control law. In the Inverse Lyapunov Approach the Lyapunov function is searched so that performance measures in structural vibration control are optimized in the premise of the bang-bang type semi-active control based on the Lyapunov function. The design parameters to determine the Lyapunov function and the design parameters of the VCD are optimized for the good performance of the semi-active control system. The Genetic Algorithm is employed for the optimal design.


Author(s):  
T. N. Kigezi ◽  
J. F. Dunne

A general design approach is presented for model-based control of piston position in a free-piston engine (FPE). The proposed approach controls either “bottom-dead-center” (BDC) or “top-dead-center” (TDC) position. The key advantage of the approach is that it facilitates controller parameter selection, by the way of deriving parameter combinations that yield both stable BDC and stable TDC. Driving the piston motion toward a target compression ratio is, therefore, achieved with sound engineering insight, consequently allowing repeatable engine cycles for steady power output. The adopted control design approach is based on linear control-oriented models derived from exploitation of energy conservation principles in a two-stroke engine cycle. Two controllers are developed: A proportional integral (PI) controller with an associated stability condition expressed in terms of controller parameters, and a linear quadratic regulator (LQR) to demonstrate a framework for advanced control design where needed. A detailed analysis is undertaken on two FPE case studies differing only by rebound device type, reporting simulation results for both PI and LQR control. The applicability of the proposed methodology to other common FPE configurations is examined to demonstrate its generality.


1979 ◽  
Vol 101 (2) ◽  
pp. 117-126 ◽  
Author(s):  
R. L. DeHoff ◽  
W. Earl Hall

Multivariable control design for turbine engines has been studied for over 20 years. In the last 10 years, the application of linear, optimal design techniques has produced a number of turbine engine controllers. A group of these design procedures is described and a discussion of the procedures’ performance, complexity and implementation is presented. The design of a full-envelope controller for the F100 turbofan engine based on linear, optimal synthesis and locally linear modeling techniques is discussed. A perspective of optimal control design for turbine engines is presented and the future is examined.


Sign in / Sign up

Export Citation Format

Share Document