From experimental evidence to mechanical modeling and design expressions: The Critical Shear Crack Theory for shear design

2019 ◽  
Vol 20 (4) ◽  
pp. 1464-1480 ◽  
Author(s):  
Aurelio Muttoni ◽  
Miguel Fernández Ruiz
2020 ◽  
pp. 136943322097814
Author(s):  
Xing-lang Fan ◽  
Sheng-jie Gu ◽  
Xi Wu ◽  
Jia-fei Jiang

Owing to their high strength-to-weight ratio, superior corrosion resistance, and convenience in manufacture, fiber-reinforced polymer (FRP) bars can be used as a good alternative to steel bars to solve the durability issue in reinforced concrete (RC) structures, especially for seawater sea-sand concrete. In this paper, a theoretical model for predicting the punching shear strength of FRP-RC slabs is developed. In this model, the punching shear strength is determined by the intersection of capacity and demanding curve of FRP-RC slabs. The capacity curve is employed based on critical shear crack theory, while the demand curve is derived with the help of a simplified tri-linear moment-curvature relationship. After the validity of the proposed model is verified with experimental data collected from the literature, the effects of concrete strength, loading area, FRP reinforcement ratio, and effective depth of concrete slabs are evaluated quantitatively.


2021 ◽  
Vol 350 ◽  
pp. 00016
Author(s):  
Viktar Tur ◽  
Aliaksandr Varabei

This paper presents a mechanical model of the shear resistance based on Critical Shear Crack Theory (CSCT) and its application for the checking of the shear ultimate state of self-stressed elements reinforced with FRP bars. The shear force, which is transmitted through the inclined crack by aggregate interlock, residual tensile strength, dowel action and inclined chord of the compression concrete, is calculated depending on the value of the inclined crack opening, determined according to the modified law “bond-slip” for FRP bars. The reliability of the proposed approach is confirmed by comparison both with the results of our own experimental investigations and with numerous research results by various authors.


Author(s):  
Fernanda Gabriella Batista Santos Oliveira ◽  
Luis Fernando Sampaio Soares ◽  
Robert Lars Vollum

abstract: This paper assesses the influence of slab continuity on the punching resistance of a realistically proportioned flat slab floor plate without shear reinforcement. The edge column punching resistance of a symmetric flat slab extending bays in each direction was assessed by means of NLFEA with TNO DIANA, MC2010 levels II, III, IV, Eurocode 2 and NBR 6118. Both Eurocode 2 and NBR 6118 are seen to give similar predictions for punching resistance, while MC2010, which is based on the Critical Shear Crack Theory and depends on how rotations are calculated and FE modelling assumptions, varies significantly with its levels of approximation with Level IV agreeing reasonably well with predictions from NLFEA. Direction for the critical rotations is shown to vary and can also be influenced by the reinforcement over the span. For EC2, NBR 6118 and MC2010 LoA II and III punching shear design are independent of span, unlike the results obtained with MC2010 LoA IV.


Sign in / Sign up

Export Citation Format

Share Document