Response characterization of highway bridge piers subjected to blast loading

2020 ◽  
Author(s):  
Kush Patel ◽  
Abhiroop Goswami ◽  
Satadru Das Adhikary
2018 ◽  
Vol 6 (5) ◽  
pp. 379-386 ◽  
Author(s):  
Feng Xiao ◽  
Gang S. Chen ◽  
J. Leroy Hulsey ◽  
Wael Zatar

2013 ◽  
Vol 569-570 ◽  
pp. 254-261
Author(s):  
Consuelo M. Gómez-Soberón ◽  
Bertha Olmos-Navarrete ◽  
Manuel Jara-Díaz ◽  
José Manuel Jara-Guerrero

Bridges are considered as vital components that require a high degree of protection to guarantee their functionality, even after significant earthquakes. So, the damage evaluation of current conditions of these structures is considered a necessary tool for inspection, maintenance and rehabilitation. Seismic fragility curves of a common highway bridge structure, with simple-supported girders, for different seismic scenarios, are evaluated in this paper. The selected bridge is a RC system with rectangular piers, forming a frame substructure; the bridge piers reinforcement is designed using steel jackets. Damage fragility curves are again evaluated for the reinforced system and compared with the initial condition; for that, a non-linear analyses with Ruaumoko program are accomplished, using a Takeda constitutive model and the damage index proposed by Parket al. As an external seismic action, artificial accelerograms are obtained based on signals registered in the most hazardous earthquake zone of Mexico. The probability changes of a certain damage level are verified for the obtained results.


2001 ◽  
Vol 52 (3-4) ◽  
pp. 441-452 ◽  
Author(s):  
Julio F Davalos ◽  
Pizhong Qiao ◽  
X Frank Xu ◽  
Justin Robinson ◽  
Karl E Barth

Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 370
Author(s):  
Ana Margarida Bento ◽  
Teresa Viseu ◽  
João Pedro Pêgo ◽  
Lúcia Couto

The prediction of scour evolution at bridge foundations is of utmost importance for engineering design and infrastructures’ safety. The complexity of the scouring inherent flow field is the result of separation and generation of multiple vortices and further magnified due to the dynamic interaction between the flow and the movable bed throughout the development of a scour hole. In experimental environments, the current approaches for scour characterization rely mainly on measurements of the evolution of movable beds rather than on flow field characterization. This paper investigates the turbulent flow field around oblong bridge pier models in a well-controlled laboratory environment, for understanding the mechanisms of flow responsible for current-induced scour. This study was based on an experimental campaign planned for velocity measurements of the flow around oblong bridge pier models, of different widths, carried out in a large-scale tilting flume. Measurements of stream-wise, cross-wise and vertical velocity distributions, as well as of the Reynolds shear stresses, were performed at both the flat and eroded bed stages of scouring development with a high-resolution acoustic velocimeter. The time-averaged values of velocity and shear stress are larger in the presence of a developed scour hole than in the corresponding flat bed configuration.


Sign in / Sign up

Export Citation Format

Share Document