A combined tuned damper and an optimal design method for wind-induced vibration control for super tall buildings

2016 ◽  
Vol 25 (10) ◽  
pp. 468-502 ◽  
Author(s):  
Lilin Wang ◽  
Xin Zhao ◽  
Yimin M. Zheng
1999 ◽  
Vol 2 (1) ◽  
pp. 69-83 ◽  
Author(s):  
Qiusheng Li ◽  
Hong Cao ◽  
Guiqing Li ◽  
Shujing Li ◽  
Dikai Liu

2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Yue Yang ◽  
Xin Zhao ◽  
Weixing Shi ◽  
Jiayue Li

Megatall and supertall buildings often adopt megastructure systems characterized by secondary structure systems, and the serviceability problem caused by wind-induced vibrations often becomes the dominant factor in the structural design. Because the deformation of a supertall building usually presents bending characteristics, a viscous damped outrigger can reduce the wind-induced vibration of a supertall building with the installation of a small number of viscous dampers. However, time history analysis of the prototype model considering the nonlinear characteristics of viscous dampers is time-consuming, which is not conducive for iterative design optimization. Additionally, the conventional simplified model composed of one cantilever beam cannot be used for the analysis and design of a viscous damped outrigger. In this study, a simplified wind-induced vibration prediction model is proposed based on the mechanical characteristics of megastructures. This simplified model is a plane model that includes both core walls and frames whose member size can be extracted from the original structure. Parametric analysis shows that the simplified model has high acceleration prediction accuracy. An optimal design method combined with the simplified model, which aims to minimize the damped outrigger system cost, is proposed. A 600-m supertall building is presented as a case study. The accuracy and effectiveness of the simplified model and the optimal design method proposed in this study are illustrated. Thus, applying this optimal design method in combination with the simplified model can save significant analysis and design time and is conducive to the application of viscous damped outriggers in practical engineering.


2021 ◽  
Vol 11 (7) ◽  
pp. 3266
Author(s):  
Insub Choi ◽  
Dongwon Kim ◽  
Junhee Kim

Under high gravity loads, steel double-beam floor systems need to be reinforced by beam-end concrete panels to reduce the material quantity since rotational constraints from the concrete panel can decrease the moment demand by inducing a negative moment at the ends of the beams. However, the optimal design process for the material quantity of steel beams requires a time-consuming iterative analysis for the entire floor system while especially keeping in consideration the rotational constraints in composite connections between the concrete panel and steel beams. This study aimed to develop an optimal design method with the LM (Length-Moment) index for the steel double-beam floor system to minimize material quantity without the iterative design process. The LM index is an indicator that can select a minimum cross-section of the steel beams in consideration of the flexural strength by lateral-torsional buckling. To verify the proposed design method, the material quantities between the proposed and code-based design methods were compared at various gravity loads. The proposed design method successfully optimized the material quantity of the steel double-beam floor systems without the iterative analysis by simply choosing the LM index of the steel beams that can minimize objective function while satisfying the safety-related constraint conditions. In particular, under the high gravity loads, the proposed design method was superb at providing a quantity-optimized design option. Thus, the proposed optimal design method can be an alternative for designing the steel double-beam floor system.


Sign in / Sign up

Export Citation Format

Share Document