Study of a new type of replaceable coupling beam in reinforced concrete shear wall structures

2019 ◽  
Vol 28 (10) ◽  
Author(s):  
Shurong Li ◽  
Huanjun Jiang ◽  
Liusheng He
Author(s):  
Ming L. Wang

Abstract During strong ground motions, members of reinforced concrete structures undergo cyclic deformations and experience permanent damage. Members may lose their initial stiffness as well as strength. Recently, Los Alamos National Laboratory has performed experiments on scale models of shear wall structures subjected to recorded earthquake signals. In general, the results indicated that the measured structural stiffness decreased with increased levels of excitation in the linear response region. Furthermore, a significant reduction in strength as well as in stiffness was also observed in the inelastic range. Since the in-structure floor response spectra, which are used to design and qualify safety equipment, have been based on calculated structural stiffness and frequencies, it is possible that certain safety equipment could experience greater seismic loads than specified for qualification due to stiffness reduction. In this research, a hysteresis model based on the concept of accumulated damage has been developed to account for this stiffness degradation both in the linear and inelastic ranges. Single and three degrees of freedom seismic Category I structures were analyzed and compared with equivalent linear stiffness degradation models in terms of maximum displacement responses, permanent displacement, and floor response spectra. The results indicate significant differences in responses between the hysteresis model and equivalent linear stiffness degradation models. The hysteresis model is recommended in the analysis of reinforced concrete shear-wall structures to obtain the in-structure floor response spectra for equipment qualification. Results of both cumulative and one shot tests are compared.


2005 ◽  
Vol 61 (7) ◽  
pp. 912-941 ◽  
Author(s):  
Wan-Shin Park ◽  
Hyun-Do Yun ◽  
Sun-Kyoung Hwang ◽  
Byung-Chan Han ◽  
Il Seung Yang

2013 ◽  
Vol 788 ◽  
pp. 538-541
Author(s):  
Peng Zhang ◽  
Fu Ma

Coupling beam, the first line resisting earthquake, is directly related to the overall performance of the shear wall structure. Using the large general finite element analysis software ANSYS, the coupling beam span-depth ratio is 2~3 different reinforcement scheme in finite element analysis. Analysis on the ductility performance of reinforced concrete coupling beams in shear wall structure in three fields: the concrete strength grade, the longitudinal reinforcement ratio and the stirrup ratio, provides a basis for the design of the structure and to provide a reference for similar studies.


2013 ◽  
Vol 671-674 ◽  
pp. 1514-1518
Author(s):  
Bing Li ◽  
He Ping Jiang ◽  
Wei Hao Wang

Reinforced concrete eccentric frame - shear wall structures has been widely used in Engineering, but this structure is mostly used for high-rise structure. Depending on experimental study will be unable to accurately draw the seismic reflection of structure, it needs to use the simulation software to study the seismic performance of high-rise structure. In this paper, by using ANSYS finite element analysis software to establish the numerical model which is based on the test model to carry out the seismic performance simulation. Then, through the improvement measures to get the measures for improved seismic performance.


2021 ◽  
Author(s):  
MUHAMMET KARATON ◽  
Ömer Faruk Osmanlı ◽  
Mehmet Eren GÜLŞAN

Abstract Reinforced concrete shear walls are the structural elements that considerably increase the seismic performance of buildings. Fiber elements and fiber-spring elements are used for the modeling of the inelastic behavior of these elements. The Fiber Element Method provides a certain amount of accuracy for the modeling of reinforced concrete shear walls. However, the studies related to this method are still in progress. In this study, the efficiency of the force-based Fiber Element Method is investigated for different damping ratios and different damping types that used in the structural damping for reinforced concrete shear wall structures. Two shear wall structures that subjected to seismic loads are used for the comparison of numerical analysis and experimental results. The comparisons are achieved according to the absolute maximum values of the overturning moment, the base shear force, and the roof displacement. Rayleigh damping and stiffness-proportional damping types for the damping ratios that vary between 2-3% provide better results than mass-proportional damping. Additionally, the optimum number of fiber element for Rayleigh and stiffness-proportional damping types is determined for the optimum damping ratio that provides minimum differences between numerical analysis and experimental results. For these damping types, when the length of a fiber is smaller than 3% of the longitudinal length of the shear wall at the optimum damping ratios, the roof displacement differences between numerical analysis and experimental results are less than 2.5%.


2015 ◽  
Vol 9 (1) ◽  
pp. 602-609
Author(s):  
Zheng Yinrui ◽  
Zhu Jiejiang

An immune genetic algorithm (IGA) is proposed to optimize the reinforced concrete (RC) frame-shear wall structures. Compared with the simple genetic algorithm (SGA), this algorithm has adaptive search capabilities for the future knowledge being used in the process of population evolution. Since the concrete grade of floors and the layout of walls are translated to binary codes, the implementation of this algorithm is not affected by the complexity of the structures. With I-typed vaccine, the continuous vertical stiffness of structure is ensured; With II-typed vaccine, the structures conforms to all the specifications which including floor shift angle, floor displacement ratio and period ratio. At the element level, the optimizing results satisfy all the specifications required by the current Chinese Codes. In this way, a computer program is created to get optimum design schemes.


2013 ◽  
Vol 671-674 ◽  
pp. 1441-1444
Author(s):  
Pin Le Zhang

Short-leg shear wall is a new type of structure form, which is widely used and developed in our country for its reasonable architectural function, mechanical performance and engineering cost. The work further investigates the seismic performance of three kinds of short-leg shear wall. Classified and brief comments about the seismic performance and the exist drawback of the three kinds of shear wall and its application are conducted. Lastly, some useful suggestions and a new structure: Steel reinforced concrete short-leg shear wall with concealed bracing are proposed for the further research.


Sign in / Sign up

Export Citation Format

Share Document