scholarly journals Experimental study of lateral load behavior of H‐shaped precast reinforced concrete shear walls with bolted steel connections

Author(s):  
Jian Sun ◽  
Hongxing Qiu ◽  
Yong Lu ◽  
Hongbo Jiang
2019 ◽  
Vol 9 (14) ◽  
pp. 2820 ◽  
Author(s):  
Dongqi Jiang ◽  
Congzhen Xiao ◽  
Tao Chen ◽  
Yuye Zhang

Shear walls are effective lateral load resisting elements in high-rise buildings. This paper presents an experimental study of the seismic performance of a composite shear wall system that consists of high-strength concrete walls with the embedded steel plate. Two sets of wall specimens with different aspect ratios (height/width, 1.5 and 2.7) were constructed and tested under quasi-static reversed cyclic loading, including five reinforced concrete shear walls (RCSW) and six reinforced concrete-steel plate shear walls (RCSPSW). The progression of damage, failure modes, and load-displacement responses of test specimens were studied and compared based on experimental observations. The test results indicated that high-strength (HS) RCSPSW system showed superior lateral load strength and acceptable deformation capability. The axial compressive load was found to have an indispensable effect on the ductility of both RCSW and RCSPSW, and an upper limit of axial compression ratio (0.5) is recommended for the application of HS RCSPSW in engineering practices. In addition, the design strength models were suggested for predicting the shear and flexure peak strength values of RCSPSW systems, and their applicability and reliability were verified by comparing with test results.


2020 ◽  
Vol 146 (5) ◽  
pp. 04020047
Author(s):  
Xin Nie ◽  
Jia-Ji Wang ◽  
Mu-Xuan Tao ◽  
Jian-Sheng Fan ◽  
Y. L. Mo ◽  
...  

2016 ◽  
Vol 124 ◽  
pp. 49-63 ◽  
Author(s):  
Wei Yang ◽  
Shan-Suo Zheng ◽  
De-Yi Zhang ◽  
Long-Fei Sun ◽  
Chuan-Lei Gan

2019 ◽  
Vol 13 (03n04) ◽  
pp. 1940002 ◽  
Author(s):  
Yao Chen ◽  
Qian Zhang ◽  
Jian Feng ◽  
Zhe Zhang

This study presents shear resistance of precast reinforced concrete (RC) shear walls. A novel assembling method for upper and lower wall panels is proposed, whereas vertical steel bars are grouped into bundles and effectively connected in preformed holes. To evaluate the feasibility and shear resistance of such a connection method, three specimens of precast shear walls with different horizontal steel bars have been constructed and tested under monotonic loading while subjected to a constant vertical compression. The results show that cracks mainly appear under the line that connects the midpoint of tension side and the corner of the compression side. The weak section of these shear walls is at the top of the preformed holes, and through cracks do not appear at the bottom of walls. These innovative precast shear walls are reliable, and no rebar is pulled out or seriously slipped. The yield load of the shear wall is great, and the stage between yield and failure is satisfactory. The bearing capacity declines slowly after the peak value.


2019 ◽  
Vol 197 ◽  
pp. 109439 ◽  
Author(s):  
Xin Nie ◽  
Jia-Ji Wang ◽  
Mu-Xuan Tao ◽  
Jian-Sheng Fan ◽  
Fan-Min Bu

Sign in / Sign up

Export Citation Format

Share Document