Mouse limb bud development in submerged culture: Quantitative assessment of the effects of in vivo exposure to retinoic acid

1984 ◽  
Vol 4 (3) ◽  
pp. 311-326 ◽  
Author(s):  
T. E. Kwasigroch ◽  
R. G. Skalko ◽  
J. K. Church
Development ◽  
1980 ◽  
Vol 59 (1) ◽  
pp. 325-339
Author(s):  
T. E. Kwasigroch ◽  
D. M. Kochhar

Two techniques were used to examine the effect of vitamin A compounds (vitamin A acid = retinoic acid and vitamin A acetate) upon the relative strengths of adhesion among mouse limb-bud mesenchymal cells. Treatment with retinoic acid in vivo and with vitamin A acetate in vitro reduced the rate at which the fragments of mesenchyme rounded-up when cultured on a non-adhesive substratum, but these compounds did not alter the behavior of tissues tested in fragment-fusion experiments. These conflicting results indicate that the two tests measure different activities of cells and suggest that treatment with vitamin A alters the property(ies) of cells which regulate the internal viscosity of tissues.


1998 ◽  
Vol 138 (1-2) ◽  
pp. 151-161 ◽  
Author(s):  
Marjolein van Kleffens ◽  
Cora Groffen ◽  
Roberto R. Rosato ◽  
Stefan M. van den Eijnde ◽  
Johan W. van Neck ◽  
...  

2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Brian Thompson ◽  
Nicholas Katsanis ◽  
Nicholas Apostolopoulos ◽  
David C. Thompson ◽  
Daniel W. Nebert ◽  
...  

AbstractRetinoic acid (RA) is a potent morphogen required for embryonic development. RA is formed in a multistep process from vitamin A (retinol); RA acts in a paracrine fashion to shape the developing eye and is essential for normal optic vesicle and anterior segment formation. Perturbation in RA-signaling can result in severe ocular developmental diseases—including microphthalmia, anophthalmia, and coloboma. RA-signaling is also essential for embryonic development and life, as indicated by the significant consequences of mutations in genes involved in RA-signaling. The requirement of RA-signaling for normal development is further supported by the manifestation of severe pathologies in animal models of RA deficiency—such as ventral lens rotation, failure of optic cup formation, and embryonic and postnatal lethality. In this review, we summarize RA-signaling, recent advances in our understanding of this pathway in eye development, and the requirement of RA-signaling for embryonic development (e.g., organogenesis and limb bud development) and life.


Development ◽  
2011 ◽  
Vol 138 (10) ◽  
pp. 1913-1923 ◽  
Author(s):  
S. Probst ◽  
C. Kraemer ◽  
P. Demougin ◽  
R. Sheth ◽  
G. R. Martin ◽  
...  

1997 ◽  
Vol 61 (3) ◽  
pp. 151-159 ◽  
Author(s):  
Joanna Wroblewski ◽  
Marianne Engström ◽  
Caroline Edwall-Arvidsson ◽  
Gunnar Sjöberg ◽  
Thomas Sejersen ◽  
...  
Keyword(s):  
Limb Bud ◽  

Development ◽  
1975 ◽  
Vol 33 (2) ◽  
pp. 355-370
Author(s):  
R. M. Greene ◽  
D. M. Kochhar

The glutamine analogue, 6-diazo-5-oxo-L-norleucine (DON), has been shown to inhibit biosynthesis of purines and glycosaminoglycans, presumably by blocking the glutaminedependent steps in the biosynthetic pathways. The teratogenic potential of DON on the developing mouse limb-bud in vivo and in vitro was studied in an attempt to discriminate whether DON is exerting its teratogenic effect by interfering with glycosaminoglycan orpurine metabolism. A single intramuscular injection of DON (0·5 mg/kg) to ICR/DUB mice on day 10 of gestation resulted in 76% resorption, while fetuses surviving to day 17 exhibited growth retardation, median cleft lip, and limb malformations. Concurrent administration of Lglutamine (250 mg/kg) provided no protection against resorption or malformations, while 5-aminoimidazolecarboxamide (AIC, 250 mg/kg) decreased the resorption rate to 34% without significantly altering the incidence of malformations. Injection of DON alone on day 11 resulted in 87% of fetuses exhibiting limb malformations, with only 2% resorption. Concurrent injection of AIC decreased the frequency of limb malformations to 32%. L-Glutamine, D-glucosamine, or inosinic acid were without any protective effect in vivo. DON (5 μg/ml medium) added in vitro to organ cultures of day 11 mouse limb-buds caused all limbs to evidence cartilage abnormalities. In this system, either L-glutamine or D-glucosamine (0·5 mg/ml medium) provided protection against DON effects while AIC (0·5 mg/ml medium) offered no protection in vitro. These data suggest that DON exerts its effects in vivo by interfering with purine metabolism while in vitro its teratogenic action may be interruption of glycosaminoglycan biosynthesis. This may reflect upon the relative importance of growth and differentiation to limb development in vivo and in vitro. These data infer that limb development in vitro relies more on the differentiative process (differentiation of cartilage) than on growth, whereas limb development in vivo is dependent, at this stage, to a greater extent on growth for normal phenotypic expression.


1992 ◽  
Vol 263 (4) ◽  
pp. 406-413 ◽  
Author(s):  
D. M. Gardiner ◽  
C. Gaudier ◽  
S. V. Bryant
Keyword(s):  
Limb Bud ◽  

Sign in / Sign up

Export Citation Format

Share Document