Search point ranking-based adaptive cuckoo search

2018 ◽  
Vol 13 (7) ◽  
pp. 1075-1076
Author(s):  
Yuki Miyake ◽  
Wataru Kumagai ◽  
Kenichi Tamura ◽  
Keiichiro Yasuda
Keyword(s):  
Author(s):  
Yuki Miyake ◽  
Kenichi Tamura ◽  
Junichi Tsuchiya ◽  
Keiichiro Yasuda
Keyword(s):  

2020 ◽  
Vol 39 (6) ◽  
pp. 8125-8137
Author(s):  
Jackson J Christy ◽  
D Rekha ◽  
V Vijayakumar ◽  
Glaucio H.S. Carvalho

Vehicular Adhoc Networks (VANET) are thought-about as a mainstay in Intelligent Transportation System (ITS). For an efficient vehicular Adhoc network, broadcasting i.e. sharing a safety related message across all vehicles and infrastructure throughout the network is pivotal. Hence an efficient TDMA based MAC protocol for VANETs would serve the purpose of broadcast scheduling. At the same time, high mobility, influential traffic density, and an altering network topology makes it strenuous to form an efficient broadcast schedule. In this paper an evolutionary approach has been chosen to solve the broadcast scheduling problem in VANETs. The paper focusses on identifying an optimal solution with minimal TDMA frames and increased transmissions. These two parameters are the converging factor for the evolutionary algorithms employed. The proposed approach uses an Adaptive Discrete Firefly Algorithm (ADFA) for solving the Broadcast Scheduling Problem (BSP). The results are compared with traditional evolutionary approaches such as Genetic Algorithm and Cuckoo search algorithm. A mathematical analysis to find the probability of achieving a time slot is done using Markov Chain analysis.


2015 ◽  
Vol 135 (6) ◽  
pp. 721-722 ◽  
Author(s):  
Wataru Kumagai ◽  
Kenichi Tamura ◽  
Junichi Tsuchiya ◽  
Keiichiro Yasuda

2019 ◽  
Vol 8 (4) ◽  
pp. 9465-9471

This paper presents a novel technique based on Cuckoo Search Algorithm (CSA) for enhancing the performance of multiline transmission network to reduce congestion in transmission line to huge level. Optimal location selection of IPFC is done using subtracting line utilization factor (SLUF) and CSA-based optimal tuning. The multi objective function consists of real power loss, security margin, bus voltage limit violation and capacity of installed IPFC. The multi objective function is tuned by CSA and the optimal location for minimizing transmission line congestion is obtained. The simulation is performed using MATLAB for IEEE 30-bus test system. The performance of CSA has been considered for various loading conditions. Results shows that the proposed CSA technique performs better by optimal location of IPFC while maintaining power system performance


Sign in / Sign up

Export Citation Format

Share Document