scholarly journals Amniotic mesenchymal stem cells mitigate osteoarthritis progression in a synovial macrophage‐mediated in vitro explant coculture model

2017 ◽  
Vol 12 (4) ◽  
pp. 1097-1110 ◽  
Author(s):  
Natasha Topoluk ◽  
Kathleen Steckbeck ◽  
Sandra Siatkowski ◽  
Brian Burnikel ◽  
John Tokish ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jun Zhang ◽  
Ziming Liu ◽  
Yuwan Li ◽  
Qi You ◽  
Jibin Yang ◽  
...  

Background. FGF-2 (basic fibroblast growth factor) has a positive effect on the proliferation and differentiation of many kinds of MSCs. Therefore, it represents an ideal molecule to facilitate tendon-to-bone healing. Nonetheless, no studies have investigated the application of FGF-2-induced human amniotic mesenchymal stem cells (hAMSCs) to accelerate tendon-to-bone healing in vivo. Objective. The purpose of this study was to explore the effect of FGF-2 on chondrogenic differentiation of hAMSCs in vitro and the effect of FGF-2-induced hAMSCs combined with a human acellular amniotic membrane (HAAM) scaffold on tendon-to-bone healing in vivo. Methods. In vitro, hAMSCs were transfected with a lentivirus carrying the FGF-2 gene, and the potential for chondrogenic differentiation of hAMSCs induced by the FGF-2 gene was assessed using immunofluorescence and toluidine blue (TB) staining. HAAM scaffold was prepared, and hematoxylin and eosin (HE) staining and scanning electron microscopy (SEM) were used to observe the microstructure of the HAAM scaffold. hAMSCs transfected with and without FGF-2 were seeded on the HAAM scaffold at a density of 3×105 cells/well. Immunofluorescence staining of vimentin and phalloidin staining were used to confirm cell adherence and growth on the HAAM scaffold. In vivo, the rabbit extra-articular tendon-to-bone healing model was created using the right hind limb of 40 New Zealand White rabbits. Grafts mimicking tendon-to-bone interface (TBI) injury were created and subjected to treatment with the HAAM scaffold loaded with FGF-2-induced hAMSCs, HAAM scaffold loaded with hAMSCs only, HAAM scaffold, and no special treatment. Macroscopic observation, imageological analysis, histological assessment, and biomechanical analysis were conducted to evaluate tendon-to-bone healing after 3 months. Results. In vitro, cartilage-specific marker staining was positive for the FGF-2 overexpression group. The HAAM scaffold displayed a netted structure and mass extracellular matrix structure. hAMSCs or hAMSCs transfected with FGF-2 survived on the HAAM scaffold and grew well. In vivo, the group treated with HAAM scaffold loaded with FGF-2-induced hAMSCs had the narrowest bone tunnel after three months as compared with other groups. In addition, macroscopic and histological scores were higher for this group than for the other groups, along with the best mechanical strength. Conclusion. hAMSCs transfected with FGF-2 combined with the HAAM scaffold could accelerate tendon-to-bone healing in a rabbit extra-articular model.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Fei Jiang ◽  
Jie Ma ◽  
Yi Liang ◽  
Yuming Niu ◽  
Ning Chen ◽  
...  

The aim of this study was to evaluate the angiogenic capacity and proteolytic mechanism of coculture using human amniotic mesenchymal stem cells (hAMSCs) with human umbilical vein endothelial cells (HUVECs)in vivoandin vitroby comparing to those of coculture using bone marrow mesenchymal stem cells with HUVEC. For thein vivoexperiment, cells (HUVEC-monoculture, HUVEC-hAMSC coculture, and HUVEC-BMMSC coculture) were seeded in fibrin gels and injected subcutaneously in nude mice. The samples were collected on days 7 and 14 and histologically analyzed by H&E and CD31 staining. CD31-positive staining percentage and vessel-like structure (VLS) density were evaluated as quantitative parameters for angiogenesis. The increases of CD31-positive staining area and VLS density in both HUVEC-hAMSC group and HUVEC-BMMSC group were found between two time points, while obvious decline of those was observed in HUVEC-only group. For thein vitroexperiment, we utilized the same 3D culture model to investigate the proteolytic mechanism related to capillary formation. Intensive vascular networks formed by HUVECs were associated with hAMSCs or BMMSCs and related to MMP2 and MMP9. In conclusion, hAMSCs shared similar capacity and proteolytic mechanism with BMMSCs on neovascularization.


2021 ◽  
Author(s):  
Zhou Ji ◽  
Songsheng Chen ◽  
Jin Cui ◽  
Weiguang Huang ◽  
Rui Zhang ◽  
...  

Abstract Background:The administration of mesenchymal stem cells (MSCs) remains the most promising approach for cardiac repair after myocardial infarct (MI). However, their poor survival and potential in the ischemic environment limits their therapeutic efficacy for heart repair after MI. The purpose of this study was to investigate the influence of FoxC1-induced vascular niche on the activation of octamer‑binding protein 4 (Oct4) and the fate of MSCs under hypoxic/ischemic conditions. Methods:Vascular microenvironment/niche was induced by efficient delivery of FoxC1 transfection into hypoxic endothelial cells (ECs) or infarcted hearts. MSCs were cultured or injected into this niche by utilizing an in vitro coculture model and a rat MI model. Survival and neovascularization of MSCs regulated by Oct4 were explored using gene transfer and functional studies. Results:Here, using gene expression heatmap, we demonstrate that cardiac ECs rapidly up-regulated FoxC1 after acute ischemic cardiac injury, contributing to an intrinsic angiogenesis. In vitro, FoxC1 accelerated tube-like structure formation and increased survival of ECs, resulting in inducing a vascular microenvironment. Overexpression of FoxC1 in ECs promoted survival and neovascularization of MSCs under hypoxic coculture. Overexpression of Oct4, a FoxC1 target gene, in MSCs enhanced their mesenchymal-to-endothelial transition (MEndoT) while knockdown of Oct4 by siRNA altering vascularization. In a rat MI model, overexpression of FoxC1 in ischemic hearts increases post infarct vascular density and improves cardiac function. Transplantation of adOct4-pretreated MSCs into these ischemic niches augments MEndoT, enhances vascularity and further improves cardiac function. Consistently, these cardioprotective effects of FoxC1 was abrogated when Oct4 was depleted in the MSCs and was mimicked by overexpression of Oct4. Conclusions:Together, these studies demonstrate that the FoxC1/Oct4 axis is an essential aspect for survival and neovascularization of MSCs in the ischemic conditions and represents a potential therapeutic target for enhancing cardiac repair.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Yuwan Li ◽  
Ziming Liu ◽  
Ying Jin ◽  
Xizhong Zhu ◽  
Shengmin Wang ◽  
...  

Anterior cruciate ligament injuries are common in humans, though cellular components of the knee have little regenerative or proliferation potential. This study investigated the differentiation of human amnion-derived mesenchymal stem cells (hAMSCs) into human anterior cruciate ligament fibroblasts (hACLFs) in vitro through induction with bFGF and TGF-β1 with coculture systems. Groups A and B comprised hAMSCs at the 3rd passage cultured with and without bFGF and TGF-β1, respectively; Groups C and D consisted of hAMSCs and hACLFs in monolayer coculture with and without bFGF and TGF-β1, respectively; Groups E and F were composed of hAMSCs and hACLFs in Transwell coculture with and without bFGF and TGF-β1, respectively. Cell morphology and proliferation were recorded. Protein expression and relative mRNA expression were evaluated in each group. Cell proliferation was significantly higher in the induced groups than in the noninduced groups. Protein expression increased over time with the highest expression observed in Group E. mRNA levels were significantly higher in Group E than in other groups. This study is the first to demonstrate the use of the Transwell coculture system for this purpose, and hAMSCs were successfully differentiated into hACLFs. Thus, hAMSCs may be a superior choice for hACLF differentiation via Transwell coculture.


2018 ◽  
Vol 50 (5) ◽  
Author(s):  
Tengfei Lu ◽  
Wenhua Pei ◽  
Shuang Zhang ◽  
Yangnan Wu ◽  
Fenghao Chen ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhou Ji ◽  
Songsheng Chen ◽  
Jin Cui ◽  
Weiguang Huang ◽  
Rui Zhang ◽  
...  

Abstract Background The administration of mesenchymal stem cells (MSCs) remains the most promising approach for cardiac repair after myocardial infarct (MI). However, their poor survival and potential in the ischemic environment limit their therapeutic efficacy for heart repair after MI. The purpose of this study was to investigate the influence of FoxC1-induced vascular niche on the activation of octamer-binding protein 4 (Oct4) and the fate of MSCs under hypoxic/ischemic conditions. Methods Vascular microenvironment/niche was induced by efficient delivery of FoxC1 transfection into hypoxic endothelial cells (ECs) or infarcted hearts. MSCs were cultured or injected into this niche by utilizing an in vitro coculture model and a rat MI model. Survival and neovascularization of MSCs regulated by Oct4 were explored using gene transfer and functional studies. Results Here, using gene expression heatmap, we demonstrated that cardiac ECs rapidly upregulated FoxC1 after acute ischemic cardiac injury, contributing to an intrinsic angiogenesis. In vitro, FoxC1 accelerated tube-like structure formation and increased survival of ECs, resulting in inducing a vascular microenvironment. Overexpression of FoxC1 in ECs promoted survival and neovascularization of MSCs under hypoxic coculture. Overexpression of Oct4, a FoxC1 target gene, in MSCs enhanced their mesenchymal-to-endothelial transition (MEndoT) while knockdown of Oct4 by siRNA altering vascularization. In a rat MI model, overexpression of FoxC1 in ischemic hearts increased post-infarct vascular density and improved cardiac function. The transplantation of adOct4-pretreated MSCs into these ischemic niches augments MEndoT, enhanced vascularity, and further improved cardiac function. Consistently, these cardioprotective effects of FoxC1 was abrogated when Oct4 was depleted in the MSCs and was mimicked by overexpression of Oct4. Conclusions Together, these studies demonstrate that the FoxC1/Oct4 axis is an essential aspect for survival and neovascularization of MSCs in the ischemic conditions and represents a potential therapeutic target for enhancing cardiac repair.


Sign in / Sign up

Export Citation Format

Share Document