scholarly journals In Vitro Culture and Biological Characteristics of Sheep Amniotic Mesenchymal Stem Cells

2018 ◽  
Vol 50 (5) ◽  
Author(s):  
Tengfei Lu ◽  
Wenhua Pei ◽  
Shuang Zhang ◽  
Yangnan Wu ◽  
Fenghao Chen ◽  
...  
2009 ◽  
Vol 21 (1) ◽  
pp. 156 ◽  
Author(s):  
F. Cremonesi ◽  
V. Maggio ◽  
A. Lange Consiglio

There are indications that the culture system and the medium composition can affect embryo quality. In fact, various studies have been shown that the in vitro culture environment is one of the key determinants of the blastocyst output. In light of this, recently, some studies used co-culture with mouse embryonic fibroblasts in the effort to improve the development of bovine and ovine in vitro-derived embryos. Despite the progress in equine IVM and ICSI technologies and the different culture conditions reported for preimplantation development of ICSI fertilized horse oocytes, the yield of blastocysts remained low. In the present study we investigated the benefits of co-culturing bovine embryos with equine bone marrow mesenchymal stem cells (BM-MSC) or equine amniotic epithelial stem cells (AE-SC) on blastocyst development. This study employed the bovine embryo as a model and represents the initial step towards standardization of a protocol for the culture of equine embryos in our laboratory. BM specimens were obtained aseptically from sternal aspirates of horses under local anaesthesia and layered over Hystopaque™ 1.080, then centrifuged for 20 min at 400g and 4°C. Cell pellets were resuspended in 10 mL Dulbecco Modified Earle’s Medium supplemented with 10% fetal calf serum, 1% non-essential amino acids, penicillin (100 U mL–1) and streptomycin (100 μg mL–1) and seeded in 24-well plates. Amniotic membranes were obtained from fresh placentas and, to release the AE cells, amniotic fractions were incubated at 37°C with 0.05% trypsin for 45 min. Separated AE cells were plated on 25 cm2 flask in standard culture media containing 10 ng mL–1 epidermal growth factor. Seven hundred fifty cumulus–oocyte complexes with a homogeneous cytoplasm and two or more layers of cumulus cells were used. After IVM and IVF cumulus-free presumptive zygotes were randomly transferred into one of three co-culture systems in which they were cultured for up to Day 7: 1) co-culture with granulosa cells (control); 2) co-culture with BM-MSC; 3) co-culture with AE-SC. The culture medium was TCM 199 + 10% fetal bovine serum, pyruvate and gentamicin at 38.5°C in 5% CO2. Statistical analyses was performed by chi square test. Blastocysts developmental rates were similar among control, AE-SC and BM-MSC (35%, 41% and 30%, respectively), but the co-culture with AE-SC gave a significantly greater percentage of blastocysts compared to BM-MSC (P < 0.05). In conclusion, despite the absence of a significant increment in blastocysts attainment using stem cells as feeders for embryo culture, the AE-SC monolayer create a more suitable microenvironment necessary for inducing local cell activation and proliferation of the growing embryos in comparison with BM-MSC. It can be suggested that these cells secrete biologically active substances including signaling molecules and growth factors of epithelial nature different from those of the BM cells of mesenchymal origin. Regione Lombardia is acknowledged for the “Dote Ricercatori” fellowship to V.M.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jun Zhang ◽  
Ziming Liu ◽  
Yuwan Li ◽  
Qi You ◽  
Jibin Yang ◽  
...  

Background. FGF-2 (basic fibroblast growth factor) has a positive effect on the proliferation and differentiation of many kinds of MSCs. Therefore, it represents an ideal molecule to facilitate tendon-to-bone healing. Nonetheless, no studies have investigated the application of FGF-2-induced human amniotic mesenchymal stem cells (hAMSCs) to accelerate tendon-to-bone healing in vivo. Objective. The purpose of this study was to explore the effect of FGF-2 on chondrogenic differentiation of hAMSCs in vitro and the effect of FGF-2-induced hAMSCs combined with a human acellular amniotic membrane (HAAM) scaffold on tendon-to-bone healing in vivo. Methods. In vitro, hAMSCs were transfected with a lentivirus carrying the FGF-2 gene, and the potential for chondrogenic differentiation of hAMSCs induced by the FGF-2 gene was assessed using immunofluorescence and toluidine blue (TB) staining. HAAM scaffold was prepared, and hematoxylin and eosin (HE) staining and scanning electron microscopy (SEM) were used to observe the microstructure of the HAAM scaffold. hAMSCs transfected with and without FGF-2 were seeded on the HAAM scaffold at a density of 3×105 cells/well. Immunofluorescence staining of vimentin and phalloidin staining were used to confirm cell adherence and growth on the HAAM scaffold. In vivo, the rabbit extra-articular tendon-to-bone healing model was created using the right hind limb of 40 New Zealand White rabbits. Grafts mimicking tendon-to-bone interface (TBI) injury were created and subjected to treatment with the HAAM scaffold loaded with FGF-2-induced hAMSCs, HAAM scaffold loaded with hAMSCs only, HAAM scaffold, and no special treatment. Macroscopic observation, imageological analysis, histological assessment, and biomechanical analysis were conducted to evaluate tendon-to-bone healing after 3 months. Results. In vitro, cartilage-specific marker staining was positive for the FGF-2 overexpression group. The HAAM scaffold displayed a netted structure and mass extracellular matrix structure. hAMSCs or hAMSCs transfected with FGF-2 survived on the HAAM scaffold and grew well. In vivo, the group treated with HAAM scaffold loaded with FGF-2-induced hAMSCs had the narrowest bone tunnel after three months as compared with other groups. In addition, macroscopic and histological scores were higher for this group than for the other groups, along with the best mechanical strength. Conclusion. hAMSCs transfected with FGF-2 combined with the HAAM scaffold could accelerate tendon-to-bone healing in a rabbit extra-articular model.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Noridzzaida Ridzuan ◽  
Akram Al Abbar ◽  
Wai Kien Yip ◽  
Maryam Maqbool ◽  
Rajesh Ramasamy

The present study is aimed at optimizing the in vitro culture protocol for generation of rat bone marrow- (BM-) derived mesenchymal stem cells (MSCs) and characterizing the culture-mediated cellular senescence. The initial phase of generation and characterization was conducted using the adherent cells from Sprague Dawley (SD) rat’s BM via morphological analysis, growth kinetics, colony forming unit capacity, immunophenotyping, and mesodermal lineage differentiation. Mesenchymal stem cells were successfully generated and characterized as delineated by the expressions of CD90.1, CD44H, CD29, and CD71 and lack of CD11b/c and CD45 markers. Upon induction, rBM-MSCs differentiated into osteocytes and adipocytes and expressed osteocytes and adipocytes genes. However, a decline in cell growth was observed at passage 4 onwards and it was further deciphered through apoptosis, cell cycle, and senescence assays. Despite the enhanced cell viability at later passages (P4-5), the expression of senescence marker,β-galactosidase, was significantly increased at passage 5. Furthermore, the cell cycle analysis has confirmed the in vitro culture-mediated cellular senescence where cells were arrested at the G0/G1phase of cell cycle. Although the currently optimized protocols had successfully yielded rBM-MSCs, the culture-mediated cellular senescence limits the growth of rBM-MSCs and its potential use in rat-based MSC research.


2007 ◽  
Vol 330-332 ◽  
pp. 1141-1144 ◽  
Author(s):  
Mika Tadokoro ◽  
Noriko Kotobuki ◽  
Akira Oshima ◽  
Hajime Ohgushi

This study focused on in vivo osteogenic capability of bone marrow mesenchymal stem cells (MSCs) seeded on ceramic scaffold. Human MSCs from a single donor were seeded on hydroxyapatite porous ceramic (HAP) and were induced to the osteogenic lineage during in vitro culture condition, then the MSCs/HAP composites were implanted subcutaneously into immunodeficient rats. The cellular activities of the composites were assayed in order to evaluate the distribution and differentiation capability of seeded MSCs before and after implantation. These results showed that the new bone, after implantation, was derived from the donor MSCs, which adhered to the surface of the ceramics pore areas during in vitro culture. Therefore, the engrafted donor cells proliferated and showed continuous osteogenic differentiation within the recipients. Consequently, our study demonstrates the usefulness of MSCs/HAP composites for clinical applications.


2009 ◽  
Vol 81 (Suppl_1) ◽  
pp. 668-668 ◽  
Author(s):  
Hye-Jin Song ◽  
Sung-June Byun ◽  
Kang-Nyeong Heo ◽  
Jum-Soon Kim ◽  
Eung-Woo Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document