Effect of non‐solvent on the synthesis of polyvinylidene fluoride membranes for vacuum membrane distillation desalination

Author(s):  
Felipe Henrique Sachett ◽  
Jocelei Duarte ◽  
Mara Zeni ◽  
Leonardo Costamilan ◽  
Matheus Poletto ◽  
...  
2019 ◽  
Vol 135 (6) ◽  
pp. 451-466 ◽  
Author(s):  
Hongbin Li ◽  
Xiangwei Feng ◽  
Wenying Shi ◽  
Haixia Zhang ◽  
Qiyun Du ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 896
Author(s):  
Marcello Pagliero ◽  
Antonio Comite ◽  
Camilla Costa ◽  
Ilaria Rizzardi ◽  
Omar Soda

Membrane distillation is a growing technology that can address the growing problem of water shortage. The implementation of renewable energy and a reduction in the environmental impact of membrane production could improve the sustainability of this process. With this perspective, porous hydrophobic polyvinylidene fluoride (PVDF) membranes were prepared using triethyl phosphate (TEP) as a green solvent, using the non-solvent induced phase separation technique. Different amounts of carbon black were added to dope solutions to improve the photothermal properties of the membranes and to enable direct heating by solar energy. By optimizing the preparation conditions, membranes with porosity values as high as 87% were manufactured. Vacuum membrane distillation tests carried out using a concentrated NaCl solution at 50 °C showed distillate fluxes of up to 36 L/m2 h and a complete salt rejection. Some preliminary studies on the photothermal performance were also conducted and highlighted the possibility of using such membranes in a direct solar membrane distillation configuration.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1601
Author(s):  
Jorge Contreras-Martínez ◽  
Carmen García-Payo ◽  
Mohamed Khayet

As a consequence of the increase in reverse osmosis (RO) desalination plants, the number of discarded RO modules for 2020 was estimated to be 14.8 million annually. Currently, these discarded modules are disposed of in nearby landfills generating high volumes of waste. In order to extend their useful life, in this research study, we propose recycling and reusing the internal components of the discarded RO modules, membranes and spacers, in membrane engineering for membrane distillation (MD) technology. After passive cleaning with a sodium hypochlorite aqueous solution, these recycled components were reused as support for polyvinylidene fluoride nanofibrous membranes prepared by electrospinning technique. The prepared membranes were characterized by different techniques and, finally, tested in desalination of high saline solutions (brines) by direct contact membrane distillation (DCMD). The effect of the electrospinning time, which is the same as the thickness of the nanofibrous layer, was studied in order to optimize the permeate flux together with the salt rejection factor and to obtain robust membranes with stable DCMD desalination performance. When the recycled RO membrane or the permeate spacer were used as supports with 60 min electrospinning time, good permeate fluxes were achieved, 43.2 and 18.1 kg m−2 h−1, respectively; with very high salt rejection factors, greater than 99.99%. These results are reasonably competitive compared to other supported and unsupported MD nanofibrous membranes. In contrast, when using the feed spacer as support, inhomogeneous structures were observed on the electrospun nanofibrous layer due to the special characteristics of this spacer resulting in low salt rejection factors and mechanical properties of the electrospun nanofibrous membrane.


Sign in / Sign up

Export Citation Format

Share Document