membrane engineering
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 38)

H-INDEX

15
(FIVE YEARS 4)

2021 ◽  
Vol 3 ◽  
Author(s):  
Adele Brunetti ◽  
Giuseppe Barbieri

Membrane operations nowadays drive the innovative design of important separation, conversion, and upgrading processes, and contribute to realizing the main principles of “green process engineering” in various sectors. In this perspective, we propose the re-design of traditional plants for biogas upgrading and integrating and/or replacing conventional operations with innovative membrane units. Bio-digester gas streams contain valuable products such as biomethane, volatile organic compounds, and volatile fatty acids, whose recovery has important advantages for environment protection, energy saving, and waste valorization. Advanced membrane units can valorize biogas by separating its various components, and establishing environmentally friendly and small-scale energivorous novel separation processes enables researchers to pursue the requirements of circular economy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Luís Ferraz ◽  
Michael Sauer ◽  
Maria João Sousa ◽  
Paola Branduardi

In the last decade, microbial-based biotechnological processes are paving the way toward sustainability as they implemented the use of renewable feedstocks. Nonetheless, the viability and competitiveness of these processes are often limited due to harsh conditions such as: the presence of feedstock-derived inhibitors including weak acids, non-uniform nature of the substrates, osmotic pressure, high temperature, extreme pH. These factors are detrimental for microbial cell factories as a whole, but more specifically the impact on the cell’s membrane is often overlooked. The plasma membrane is a complex system involved in major biological processes, including establishing and maintaining transmembrane gradients, controlling uptake and secretion, intercellular and intracellular communication, cell to cell recognition and cell’s physical protection. Therefore, when designing strategies for the development of versatile, robust and efficient cell factories ready to tackle the harshness of industrial processes while delivering high values of yield, titer and productivity, the plasma membrane has to be considered. Plasma membrane composition comprises diverse macromolecules and it is not constant, as cells adapt it according to the surrounding environment. Remarkably, membrane-specific traits are emerging properties of the system and therefore it is not trivial to predict which membrane composition is advantageous under certain conditions. This review includes an overview of membrane engineering strategies applied to Saccharomyces cerevisiae to enhance its fitness under industrially relevant conditions as well as strategies to increase microbial production of the metabolites of interest.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alok Raghav ◽  
Prashant Tripathi ◽  
Brijesh Kumar Mishra ◽  
Goo-Bo Jeong ◽  
Shahid Banday ◽  
...  

Exosomes are nano-vesicles of endosomal origin inherited with characteristics of drug delivery and cargo loading. Exosomes offer a diverse range of opportunities that can be exploited in the treatment of various diseases post-functionalization. This membrane engineering is recently being used in the management of bacteria-associated diabetic foot ulcers (DFUs). Diabetes mellitus (DM) is among the most crippling disease of society with a large share of its imposing economic burden. DM in a chronic state is associated with the development of micro- and macrovascular complications. DFU is among the diabetic microvascular complications with the consequent occurrence of diabetic peripheral neuropathy. Mesenchymal stromal cell (MSC)-derived exosomes post-tailoring hold promise to accelerate the diabetic wound repair in DFU associated with bacterial inhabitant. These exosomes promote the antibacterial properties with regenerative activity by loading bioactive molecules like growth factors, nucleic acids, and proteins, and non-bioactive substances like antibiotics. Functionalization of MSC-derived exosomes is mediated by various physical, chemical, and biological processes that effectively load the desired cargo into the exosomes for targeted delivery at specific bacterial DFUs and wound. The present study focused on the application of the cargo-loaded exosomes in the treatment of DFU and also emphasizes the different approaches for loading the desired cargo/drug inside exosomes. However, more studies and clinical trials are needed in the domain to explore this membrane engineering.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1601
Author(s):  
Jorge Contreras-Martínez ◽  
Carmen García-Payo ◽  
Mohamed Khayet

As a consequence of the increase in reverse osmosis (RO) desalination plants, the number of discarded RO modules for 2020 was estimated to be 14.8 million annually. Currently, these discarded modules are disposed of in nearby landfills generating high volumes of waste. In order to extend their useful life, in this research study, we propose recycling and reusing the internal components of the discarded RO modules, membranes and spacers, in membrane engineering for membrane distillation (MD) technology. After passive cleaning with a sodium hypochlorite aqueous solution, these recycled components were reused as support for polyvinylidene fluoride nanofibrous membranes prepared by electrospinning technique. The prepared membranes were characterized by different techniques and, finally, tested in desalination of high saline solutions (brines) by direct contact membrane distillation (DCMD). The effect of the electrospinning time, which is the same as the thickness of the nanofibrous layer, was studied in order to optimize the permeate flux together with the salt rejection factor and to obtain robust membranes with stable DCMD desalination performance. When the recycled RO membrane or the permeate spacer were used as supports with 60 min electrospinning time, good permeate fluxes were achieved, 43.2 and 18.1 kg m−2 h−1, respectively; with very high salt rejection factors, greater than 99.99%. These results are reasonably competitive compared to other supported and unsupported MD nanofibrous membranes. In contrast, when using the feed spacer as support, inhomogeneous structures were observed on the electrospun nanofibrous layer due to the special characteristics of this spacer resulting in low salt rejection factors and mechanical properties of the electrospun nanofibrous membrane.


Author(s):  
Tomoko Yoshino ◽  
Sayaka Tayama ◽  
Maeda Yoshiaki ◽  
Kazushi Fujimoto ◽  
Shuhei Ohta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document