Multifocal cryptococcosis diagnosis by peripheral lymph node aspirates in a cat

Author(s):  
Sarah Butterfield ◽  
Charles R. J. Matthias ◽  
Joseph Fenn ◽  
Balazs Szladovits ◽  
Abbe H. Crawford
1989 ◽  
Vol 109 (1) ◽  
pp. 421-427 ◽  
Author(s):  
B R Bowen ◽  
T Nguyen ◽  
L A Lasky

Lymphocyte trafficking is a fundamental aspect of the immune system that allows B and T lymphocytes with diverse antigen recognition specificities to be exposed to various antigenic stimuli in spatially distinct regions of an organism. A lymphocyte adhesion molecule that is involved with this trafficking phenomenon has been termed the homing receptor. Previous work (Lasky, L., T. Yednock, M. Singer, D. Dowbenko, C. Fennie, H. Rodriguez, T. Nguyen, S. Stachel, and S. Rosen. 1989. Cell. 56:1045-1055) has characterized a cDNA clone encoding a murine homing receptor that is involved in trafficking of lymphocytes to peripheral lymph nodes. This molecule was found to contain a number of protein motifs, the most intriguing of which was a carbohydrate binding domain, or lectin, that is apparently involved in the adhesive interaction between murine lymphocytes and peripheral lymph node endothelium. In this study, we have used the murine cDNA clone to isolate a human homologue of this peripheral lymph node-specific adhesion molecule. The human receptor was found to be highly homologous to the murine receptor in overall sequence, but showed no sequence similarity to another surface protein that may be involved with human lymphocyte homing, the Hermes glycoprotein. The extracellular region of the human receptor contained an NH2 terminally located carbohydrate binding domain followed by an EGF-like domain and a domain containing two repeats of a complement binding motif. Transient cell transfection assays using the human receptor cDNA showed that it encoded a surface glycoprotein that cross reacted with a polyclonal antibody directed against the murine peripheral lymph node homing receptor. Interestingly, the human receptor showed a high degree of sequence homology to another human cell adhesion glycoprotein, the endothelial cell adhesion molecule ELAM.


PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0132400 ◽  
Author(s):  
Chinmay Khandkar ◽  
Zinta Harrington ◽  
Peter J. Jelfs ◽  
Vitali Sintchenko ◽  
Claudia C. Dobler

1989 ◽  
Vol 109 (5) ◽  
pp. 2463-2469 ◽  
Author(s):  
J S Geoffroy ◽  
S D Rosen

Lymphocyte migration from the blood into most secondary lymphoid organs is initiated by a highly selective adhesive interaction with the endothelium of specialized blood vessels known as high endothelial venules (HEV). The propensity of lymphocytes to migrate to particular lymphoid organs is known as lymphocyte homing, and the receptors on lymphocytes that dictate interactions with HEV at particular anatomical sites are designated "homing receptors". Based upon antibody blockade experiments and cell-type distribution studies, a prominent candidate for the peripheral lymph node homing receptor in mouse is the approximately 90-kD cell surface glycoprotein (gp90MEL) recognized by the monoclonal antibody MEL-14. Previous work, including sequencing of a cDNA encoding for this molecule, supports the possibility that gp90MEL is a calcium-dependent lectin-like receptor. Here, we show that immunoaffinity-purified gp90MEL interacts in a sugar-inhibitable manner with sites on peripheral lymph node HEV and prevents attachment of lymphocytes. Lymphocyte attachment to HEV in Peyer's patches, a gut-associated lymphoid organ, is not affected by gp90MEL. The results demonstrate that gp90MEL, as a lectin-like receptor, directly bridges lymphocytes to the endothelium.


2013 ◽  
Vol 29 (1-4) ◽  
pp. 60-63 ◽  
Author(s):  
Isaac Wamala ◽  
Abraham J. Matar ◽  
Evan Farkash ◽  
Zhirui Wang ◽  
Christene A. Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document