Smart dynamic rotor control using active flaps on a small-scale wind turbine: aeroelastic modeling and comparison with wind tunnel measurements

Wind Energy ◽  
2012 ◽  
pp. n/a-n/a ◽  
Author(s):  
T.K. Barlas ◽  
W. van Wingerden ◽  
A.W. Hulskamp ◽  
G.A. M. van Kuik ◽  
H.E. N. Bersee
Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1465 ◽  
Author(s):  
Andrés Meana-Fernández ◽  
Jesús Manuel Fernández Oro ◽  
Katia María Argüelles Díaz ◽  
Mónica Galdo-Vega ◽  
Sandra Velarde-Suárez

Wind tunnel testing of small-scale models is one of the most useful techniques to predict the performance of real-scale applications. In this work, the aerodynamic design and the construction of a small-scale model of a straight-bladed vertical axis wind turbine for wind tunnel testing has been performed. Using a double multiple streamtube model (DMST), different solidity values for the turbine and different airfoil geometries were compared to select the final design. Once an optimal design was selected, a numerical simulation using Computational Fluid Dynamics (CFD) was performed in order to obtain a more precise description of the flow field as well as the performance of the model. Future work will comprise the characterization of the model and the comparison of the experimental and numerical results.


2013 ◽  
Vol 737 ◽  
pp. 499-526 ◽  
Author(s):  
G. V. Iungo ◽  
F. Viola ◽  
S. Camarri ◽  
F. Porté-Agel ◽  
F. Gallaire

AbstractWind tunnel measurements were performed for the wake produced by a three-bladed wind turbine immersed in uniform flow. These tests show the presence of a vorticity structure in the near-wake region mainly oriented along the streamwise direction, which is denoted as the hub vortex. The hub vortex is characterized by oscillations with frequencies lower than that connected to the rotational velocity of the rotor, which previous works have ascribed to wake meandering. This phenomenon consists of transversal oscillations of the wind turbine wake, which might be excited by the vortex shedding from the rotor disc acting as a bluff body. In this work, temporal and spatial linear stability analyses of a wind turbine wake are performed on a base flow obtained with time-averaged wind tunnel velocity measurements. This study shows that the low-frequency spectral component detected experimentally matches the most amplified frequency of the counter-winding single-helix mode downstream of the wind turbine. Then, simultaneous hot-wire measurements confirm the presence of a helicoidal unstable mode of the hub vortex with a streamwise wavenumber roughly equal to that predicted from the linear stability analysis.


Author(s):  
G. Pechlivanoglou ◽  
S. Fuehr ◽  
C. N. Nayeri ◽  
C. O. Paschereit

The effects of distributed roughness on wind turbines are extensively investigated in this paper. The sources of roughness are identified and analyzed and their effects on airfoil are estimated from simulations and measured with wind tunnel measurements. In addition to the environmental and manufacturing induced roughness, several forms of roughness-related shape deviations are investigated and their effects on the aerodynamic performance of airfoils is qualitatively predicted through numerical simulations. The actual effects of roughness on wind turbine performance are also presented through power production measurements of wind turbines installed in sandy environments. These measurements are correlated with simulated power predictions, utilizing a steady state BEM code.


Author(s):  
O. Eisele ◽  
G. Pechlivanoglou ◽  
C. N. Nayeri ◽  
C. O. Paschereit

Wind turbine blade design is currently based on the combination of a plurality of airfoil sections along the rotorblade span. The two-dimensional airfoil characteristics are usually measured with wind tunnel experiments or computed by means of numerical simulation codes. The general airfoil input for the calculation of the rotorblade power characteristics as well as the subsequent aerodynamic and aeroelastic loads are based on these two-dimensional airfoil characteristics. In this paper, the effects of inflow turbulence and wind tunnel test measurement deviations are investigated and discussed, to allow considerations of such effects in the rotorblade design process. The results of CFD simulations with various turbulence models are utilized in combination with wind tunnel measurements in order to assess the impact of such discrepancies. It seems that turbulence, airfoil surface roughness and early transition effects are able to contribute significantly to the uncertainty and scattering of measurements. Various wind tunnel facilities generate different performance characteristic curves, while grid-generated turbulence is generally not included in the wind tunnel measurements during airfoil characterization. Furthermore the correlation of grid-generated wind tunnel turbulence with the atmospheric turbulence time and length scales is not easily achieved. All the aforementioned uncertainties can increase the performance scattering of current wind turbine blade designs as well as the generated aeroelastic loads. A brief assessment of the effect of such uncertainties on wind turbine performance is given at the last part of this work by means of BEM simulations on a wind turbine blade.


2021 ◽  
Author(s):  
◽  
Riley Willis

<p>“Good mental health in a fluid or CFD modeller is always indicated by the presence of a suspicious nature, cynicism and a ‘show me’ attitude. These are not necessarily the best traits for a life mate or a best friend, but they are essential if the integrity of the modelling process is to be maintained.” (Meroney, 2004)  Over the past 50 years, Computational Fluid Dynamics (CFD) computer simulation programs have offered a new method of calculating the wind comfort and safety data for use in pedestrian wind studies. CFD models claim to have some important advantages over wind tunnels; which remain the most common method of wind calculation. While wind tunnels provide measurements of selected points, CFD simulations provide whole-flow field data for the entire area under investigation (Blocken, 2014; Blocken, Stathopoulos, & van Beeck, 2016). Similarly, wind tunnel measurements must consider the similarity requirements involved with testing a model at small scale, while CFD simulations can avoid this as they are conducted at full scale (Ramponi & Blocken, 2012a).  However, CFD simulations can also often be misleading; and they should only be trusted once they can be proven to be accurate. To appease the requirements for this cynical view- referenced in the above quote- proper verification and validation of a model is imperative.  This thesis investigated and tested the current best practice guidelines around CFD model validation, using existing wind tunnel measurements of generic urban arrays. The goal of the research was to determine whether the existing data and guidance around the validation process was sufficient for a consultant user to trust that a CFD model they created was sufficiently accurate to base design decisions from.  The CFD code Autodesk CFD was used to simulate two configurations first tested as wind tunnel models by the Architectural Institute of Japan, and Opus labs in Wellington. The Wellington City Council wind speed criteria were used to determine whether the CFD simulations met the required accuracy criteria for council consent.  Results from the study found that the CFD models could not meet the accuracy criteria. It concluded that while the validation process provided sufficient guidance, there is a lack of available data which is relevant to CFD validation for urban flows.  It was recommended that at least one improved dataset was required, to build a system by which a consultant can identify what the requirements of a CFD model are to provide accurate CFD analysis of the site under investigation. To accommodate the range of sites likely to be present in urban wind studies, it was recommended that the new dataset provided data for a variety of wind flows likely to be found in cities.</p>


2017 ◽  
Vol 2 (1) ◽  
pp. 329-341 ◽  
Author(s):  
Marijn Floris van Dooren ◽  
Filippo Campagnolo ◽  
Mikael Sjöholm ◽  
Nikolas Angelou ◽  
Torben Mikkelsen ◽  
...  

Abstract. This paper combines the research methodologies of scaled wind turbine model experiments in wind tunnels with short-range WindScanner lidar measurement technology. The wind tunnel at the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner lidars to demonstrate the benefits of synchronised scanning lidars in such experimental surroundings for the first time. The dual-lidar system can provide fully synchronised trajectory scans with sampling timescales ranging from seconds to minutes. First, staring mode measurements were compared to hot-wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u and v components of the wind speed, respectively, validating the 2-D measurement capability of the lidar scanners. Subsequently, the measurement of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of lidar scanning to the measurement of small-scale wind flow effects. An extensive uncertainty analysis was executed to assess the accuracy of the method. The downsides of lidar with respect to the hot-wire probes are the larger measurement probe volume, which compromises the ability to measure turbulence, and the possible loss of a small part of the measurements due to hard target beam reflection. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning and the fact that remote sensing techniques do not disturb the flow during measuring. The research campaign revealed a high potential for using short-range synchronised scanning lidars to measure the flow around wind turbines in a wind tunnel and increased the knowledge about the corresponding uncertainties.


2016 ◽  
Vol 753 ◽  
pp. 072013 ◽  
Author(s):  
David Verelst ◽  
Torben Larsen ◽  
Jan-Willem van Wingerden

Sign in / Sign up

Export Citation Format

Share Document