High-throughput computation and the applicability of Monte Carlo integration in fatigue load estimation of floating offshore wind turbines

Wind Energy ◽  
2015 ◽  
Vol 19 (5) ◽  
pp. 861-872 ◽  
Author(s):  
Peter A. Graf ◽  
Gordon Stewart ◽  
Matthew Lackner ◽  
Katherine Dykes ◽  
Paul Veers
2017 ◽  
Author(s):  
Kolja Müller ◽  
Po Wen Cheng

Abstract. Fatigue load assessment of floating offshore wind turbines poses new challenges on the feasibility of numerical procedures. Due to the increased sensitivity of the considered system with respect to the environmental conditions from wind and ocean, the application of common procedures used for fixed-bottom structures results in either inaccurate simulation results or hard-to-quantify conservatism in the system design. Monte Carlo based sampling procedures provide a more realistic approach to deal with the large variation of the environmental conditions, although basic randomization has shown slow convergence. Specialized sampling methods allow efficient coverage of the complete design space, resulting in faster convergence and hence a reduced number of required simulations. In this study, a quasi-random sampling approach based on Sobol’ sequences is applied to select representative events for the determination of the lifetime damage. This is calculated applying Monte-Carlo integration, using subsets of a resulting total of 16 200 coupled time-domain simulations performed with the simulation code FAST. The considered system is the DTU 10 MW reference turbine installed on the LIFES50+ OO-Star Wind Floater Semi 10 MW floating platform. Statistical properties of the considered environmental parameters (i.e. wind speed, wave height and wave period) are determined based on the measurement data from Gulf of Maine, USA. Convergence analyses show that it is sufficient to perform around 200 simulations in order to reach less than 10 % uncertainty of lifetime fatigue damage equivalent loading. Complementary in-depth investigation is performed focusing on the load sensitivity and the impact of outliers. Recommendations for the implementation of the proposed methodology in the design process are also provided.


2018 ◽  
Vol 3 (1) ◽  
pp. 149-162 ◽  
Author(s):  
Kolja Müller ◽  
Po Wen Cheng

Abstract. Fatigue load assessment of floating offshore wind turbines poses new challenges on the feasibility of numerical procedures. Due to the increased sensitivity of the considered system with respect to the environmental conditions from wind and ocean, the application of common procedures used for fixed-bottom structures results in either inaccurate simulation results or hard-to-quantify conservatism in the system design. Monte Carlo-based sampling procedures provide a more realistic approach to deal with the large variation in the environmental conditions, although basic randomization has shown slow convergence. Specialized sampling methods allow efficient coverage of the complete design space, resulting in faster convergence and hence a reduced number of required simulations. In this study, a quasi-random sampling approach based on Sobol sequences is applied to select representative events for the determination of the lifetime damage. This is calculated applying Monte Carlo integration, using subsets of a resulting total of 16 200 coupled time–domain simulations performed with the simulation code FAST. The considered system is the Danmarks Tekniske Universitet (DTU) 10 MW reference turbine installed on the LIFES50+ OO-Star Wind Floater Semi 10 MW floating platform. Statistical properties of the considered environmental parameters (i.e., wind speed, wave height and wave period) are determined based on the measurement data from the Gulf of Maine, USA. Convergence analyses show that it is sufficient to perform around 200 simulations in order to reach less than 10 % uncertainty of lifetime fatigue damage-equivalent loading. Complementary in-depth investigation is performed, focusing on the load sensitivity and the impact of outliers (i.e., values far away from the mean). Recommendations for the implementation of the proposed methodology in the design process are also provided.


2016 ◽  
Vol 91 ◽  
pp. 425-433 ◽  
Author(s):  
Lisa Ziegler ◽  
Sven Voormeeren ◽  
Sebastian Schafhirt ◽  
Michael Muskulus

2014 ◽  
Vol 134 (8) ◽  
pp. 1096-1103 ◽  
Author(s):  
Sho Tsujimoto ◽  
Ségolène Dessort ◽  
Naoyuki Hara ◽  
Keiji Konishi

2021 ◽  
Vol 9 (5) ◽  
pp. 543
Author(s):  
Jiawen Li ◽  
Jingyu Bian ◽  
Yuxiang Ma ◽  
Yichen Jiang

A typhoon is a restrictive factor in the development of floating wind power in China. However, the influences of multistage typhoon wind and waves on offshore wind turbines have not yet been studied. Based on Typhoon Mangkhut, in this study, the characteristics of the motion response and structural loads of an offshore wind turbine are investigated during the travel process. For this purpose, a framework is established and verified for investigating the typhoon-induced effects of offshore wind turbines, including a multistage typhoon wave field and a coupled dynamic model of offshore wind turbines. On this basis, the motion response and structural loads of different stages are calculated and analyzed systematically. The results show that the maximum response does not exactly correspond to the maximum wave or wind stage. Considering only the maximum wave height or wind speed may underestimate the motion response during the traveling process of the typhoon, which has problems in guiding the anti-typhoon design of offshore wind turbines. In addition, the coupling motion between the floating foundation and turbine should be considered in the safety evaluation of the floating offshore wind turbine under typhoon conditions.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 475
Author(s):  
Payam Aboutalebi ◽  
Fares M’zoughi ◽  
Izaskun Garrido ◽  
Aitor J. Garrido

Undesired motions in Floating Offshore Wind Turbines (FOWT) lead to reduction of system efficiency, the system’s lifespan, wind and wave energy mitigation and increment of stress on the system and maintenance costs. In this article, a new barge platform structure for a FOWT has been proposed with the objective of reducing these undesired platform motions. The newly proposed barge structure aims to reduce the tower displacements and platform’s oscillations, particularly in rotational movements. This is achieved by installing Oscillating Water Columns (OWC) within the barge to oppose the oscillatory motion of the waves. Response Amplitude Operator (RAO) is used to predict the motions of the system exposed to different wave frequencies. From the RAOs analysis, the system’s performance has been evaluated for representative regular wave periods. Simulations using numerical tools show the positive impact of the added OWCs on the system’s stability. The results prove that the proposed platform presents better performance by decreasing the oscillations for the given range of wave frequencies, compared to the traditional barge platform.


Sign in / Sign up

Export Citation Format

Share Document