scholarly journals Incorporating a stochastic data-driven inflow model for uncertainty quantification of wind turbine performance

Wind Energy ◽  
2017 ◽  
Vol 20 (9) ◽  
pp. 1551-1567
Author(s):  
Q. Guo ◽  
B. Ganapathysubramanian
2020 ◽  
Vol 1618 ◽  
pp. 052082
Author(s):  
David C. Maniaci ◽  
Carsten Westergaard ◽  
Alan Hsieh ◽  
Joshua A. Paquette

2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Davide Astolfi ◽  
Francesco Castellani ◽  
Francesco Natili

Abstract Wind turbine performance monitoring is a complex task because the power has a multivariate dependence on ambient conditions and working parameters. Furthermore, wind turbine nacelle anemometers are placed behind the rotor span and the control system estimates the upwind flow through a nacelle transfer function: this introduces a data quality issue. This study is devoted to the analysis of data-driven techniques for wind turbine performance control and monitoring: operation data of six 850 kW wind turbines sited in Italy have been employed. The objective of this study is an assessment of several easily implementable techniques and input variables selections for data-driven models whose target is the power of a wind turbine. Three model types are selected: one is linear (Principal Component Regression) and two are nonlinear (Support Vector Regression with Gaussian Kernel and Feedforward Artificial Neural Network). The models' validation provides meaningful indications: the linear model in general has lower performance because it cannot reproduce properly the nonlinear pitch behavior when approaching rated power. Therefore, it is concluded that a nonlinear model should be employed and the achieved mean absolute error is of the order of 1.3% of the rated power. Furthermore, the errors are kept at the order of 2% of the rated power for the models whose input is the rotor speed instead that wind speed: this observation supports that, in case it is needed because of nacelle anemometer biases, the power monitoring can be acceptably implemented using the rotor speed.


2010 ◽  
Vol 1 (2) ◽  
pp. 66-76 ◽  
Author(s):  
Andrew Kusiak ◽  
Zijun Zhang ◽  
Mingyang Li

2021 ◽  
Vol 3 (8) ◽  
Author(s):  
M. Niyat Zadeh ◽  
M. Pourfallah ◽  
S. Safari Sabet ◽  
M. Gholinia ◽  
S. Mouloodi ◽  
...  

AbstractIn this paper, we attempted to measure the effect of Bach’s section, which presents a high-power coefficient in the standard Savonius model, on the performance of the helical Savonius wind turbine, by observing the parameters affecting turbine performance. Assessment methods based on the tip speed ratio, torque variation, flow field characterizations, and the power coefficient are performed. The present issue was stimulated using the turbulence model SST (k- ω) at 6, 8, and 10 m/s wind flow velocities via COMSOL software. Numerical simulation was validated employing previous articles. Outputs demonstrate that Bach-primary and Bach-developed wind turbine models have less flow separation at the spoke-end than the simple helical Savonius model, ultimately improving wind turbines’ total performance and reducing spoke-dynamic loads. Compared with the basic model, the Bach-developed model shows an 18.3% performance improvement in the maximum power coefficient. Bach’s primary model also offers a 12.4% increase in power production than the initial model’s best performance. Furthermore, the results indicate that changing the geometric parameters of the Bach model at high velocities (in turbulent flows) does not significantly affect improving performance.


Sign in / Sign up

Export Citation Format

Share Document