scholarly journals Large-eddy simulations of wind-farm wake characteristics associated with a low-level jet

Wind Energy ◽  
2017 ◽  
Vol 21 (3) ◽  
pp. 163-173 ◽  
Author(s):  
Ji Sung Na ◽  
Eunmo Koo ◽  
Emilia Kyung Jin ◽  
Rodman Linn ◽  
Seung Chul Ko ◽  
...  
2021 ◽  
Vol 1934 (1) ◽  
pp. 012001
Author(s):  
Srinidhi N. Gadde ◽  
Luoqin Liu ◽  
Richard J. A. M. Stevens

2018 ◽  
Author(s):  
Luis A. Martínez-Tossas ◽  
Jennifer Annoni ◽  
Paul A. Fleming ◽  
Matthew J. Churchfield

Abstract. When a wind turbine is yawed, the shape of the wake changes and a curled wake profile is generated. The curled wake has drawn a lot of interest because of its aerodynamic complexity and applicability to wind farm controls. The main mechanism for the creation of the curled wake has been identified in the literature as a collection of vortices that are shed from the rotor plane when the turbine is yawed. This work extends that idea by using aerodynamic concepts to develop a control-oriented model for the curled wake based on approximations to the Navier-Stokes equations. The model is tested and compared to large-eddy simulations using actuator disk and line models. The model is able to capture the curling mechanism for a turbine under uniform inflow and in the case of a neutral atmospheric boundary layer. The model is then tested inside the FLOw Redirection and Induction in Steady State framework and provides excellent agreement with power predictions for cases with two and three turbines in a row.


2021 ◽  
Author(s):  
Alfredo Peña ◽  
Jeffrey Mirocha

<p>Mesoscale models, such as the Weather Research and Forecasting (WRF) model, are now commonly used to predict wind resources, and in recent years their outputs are being used as inputs to wake models for the prediction of the production of wind farms. Also, wind farm parametrizations have been implemented in the mesoscale models but their accuracy to reproduce wind speeds and turbulent kinetic energy fields within and around wind farms is yet unknown. This is partly because they have been evaluated against wind farm power measurements directly and, generally, a lack of high-quality observations of the wind field around large wind farms. Here, we evaluate the in-built wind farm parametrization of the WRF model, the so-called Fitch scheme that works together with the MYNN2 planetary boundary layer (PBL) scheme against large-eddy simulations (LES) of wakes using a generalized actuator disk model, which was also implemented within the same WRF version. After setting both types of simulations as similar as possible so that the inflow conditions are nearly identical, preliminary results show that the velocity deficits can differ up to 50% within the same area (determined by the resolution of the mesoscale run) where the turbine is placed. In contrast, within that same area, the turbine-generated TKE is nearly identical in both simulations. We also prepare an analysis of the sensitivity of the results to the inflow wind conditions, horizontal grid resolution of both the LES and the PBL run, number of turbines within the mesoscale grid cells, surface roughness, inversion strength, and boundary-layer height.</p>


2015 ◽  
Vol 625 ◽  
pp. 012022
Author(s):  
O Eriksson ◽  
K Nilsson ◽  
S-P Breton ◽  
S Ivanell

Sign in / Sign up

Export Citation Format

Share Document