scholarly journals Development of a passive‐adaptive slat for a wind turbine airfoil

Wind Energy ◽  
2021 ◽  
Author(s):  
Florian N. Schmidt ◽  
Jochen Wild
Author(s):  
D. De Tavernier ◽  
C. Ferreira ◽  
A. Viré ◽  
B. LeBlanc ◽  
S. Bernardy

2020 ◽  
Vol 53 (2) ◽  
pp. 12675-12681
Author(s):  
Dominique Nelson-Gruel ◽  
Pierrick Joseph ◽  
Alexis Paulh-Manssens ◽  
Annie Leroy ◽  
Sandrine Aubrun ◽  
...  

2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Yan Wang ◽  
Ruifeng Hu ◽  
Xiaojing Zheng

Leading edge erosion is a considerable threat to wind turbine performance and blade maintenance, and it is very imperative to accurately predict the influence of various degrees of erosion on wind turbine performance. In the present study, an attempt to investigate the effects of leading edge erosion on the aerodynamics of wind turbine airfoil is undertaken by using computational fluid dynamics (CFD) method. A new pitting erosion model is proposed and semicircle cavities were used to represent the erosion pits in the simulation. Two-dimensional incompressible Reynolds-averaged Navier–Stokes equation and shear stress transport (SST) k–ω turbulence model are adopted to compute the aerodynamics of a S809 airfoil with leading edge pitting erosions, where the influences of pits depth, densities, distribution area, and locations are considered. The results indicate that pitting erosion has remarkably undesirable influences on the aerodynamic performance of the airfoil, and the critical pits depth, density, and distribution area degrade the airfoil aerodynamic performance mostly were obtained. In addition, the dominant parameters are determined by the correlation coefficient path analysis method, results showed that all parameters have non-negligible effects on the aerodynamics of S809 airfoil, and the Reynolds number is of the most important, followed by pits density, pits depth, and pits distribution area. Meanwhile, the direct and indirect effects of these factors are analyzed, and it is found that the indirect effects are very small and the parameters can be considered to be independent with each other.


2019 ◽  
Vol 22 (4) ◽  
pp. 661-667 ◽  
Author(s):  
Linyue Gao ◽  
Ramsankar Veerakumar ◽  
Yang Liu ◽  
Hui Hu

2018 ◽  
Vol 8 (7) ◽  
pp. 1111 ◽  
Author(s):  
Shuang Li ◽  
Lei Zhang ◽  
Ke Yang ◽  
Jin Xu ◽  
Xue Li

Sign in / Sign up

Export Citation Format

Share Document