A Method of Characteristics for Solving Two-dimensional Unsteady Flow Problems

Author(s):  
Renuka Ravindran

The steady, supersonic, irrotational, isentropic, two-dimensional, shock-free flow of a perfect gas is investigated by a new, geometrical, method based on the use of characteristic co-ordinates. Some of the results apply also to more general problems of compressible flow involving two independent variables (§1). The method is applied in particular to the treatment of the non-linear, non-analytic features. The variation in magnitude of discontinuities of the velocity gradient is determined as a function of the Mach number in § 4. The reflexion at the sonic line of such discontinuities is treated in § 7. The isingularities of the field of flow are discussed in §§ 5 to 5.4; Craggs’s (1948) results are extended to the case when the velocity components are not analytic functions of position, and to the case in which both the hodograph transformation and the inverse transformation are singular.. Examples are given of singularities that occur in familiar flow problems, but have not hitherto been described (§§ 5.3, 5.4). Some properties are established of the geometry in the large of Mach line patterns; these properties are useful for the prediction of limit lines (§ 5.2). The problem of the start of an oblique shockwave in the middle of the flow is briefly reviewed in §6. In the appendix it is shown that the conventional method of characteristics for the numerical treat­ ment of two-dimensional, isentropic, irrotational, steady, supersonic flows must be modified near a branch line if a loss of accuracy is to be avoided.


Author(s):  
Daniel T. Valentine ◽  
Farshad Madhi

The complete solution of several two-dimensional potential flow problems are reported that deal with the unsteady flow around circular cylinders. Three of the flows considered are induced by an oscillating disturbance near the cylinder. The three elemental disturbances examined are (1) a pulsating source, (2) a pulsating doublet and (3) a pulsating vortex. The formulas for the force acting on the cylinder due to each of the elemental disturbances were derived by applying the method of images and checked by deriving the equivalent surface distribution of sources to model the cylinder starting with Green’s second identity. The theory helped direct the development of a boundary-integral numerical model described and applied in this paper to solve the unsteady flow around a circular cylinder due to an arbitrarily specified oscillatory disturbance near the cylinder. The numerical method is validated by comparing predictions of the force with the exact solutions.


Author(s):  
E.R Johnson ◽  
G.G Vilenski

This paper describes steady two-dimensional disturbances forced on the interface of a two-layer fluid by flow over an isolated obstacle. The oncoming flow speed is close to the linear longwave speed and the layer densities, layer depths and obstacle height are chosen so that the equations of motion reduce to the forced two-dimensional Korteweg–de Vries equation with cubic nonlinearity, i.e. the forced extended Kadomtsev–Petviashvili equation. The distinctive feature noted here is the appearance in the far lee-wave wake behind obstacles in subcritical flow of a ‘table-top’ wave extending almost one-dimensionally for many obstacles widths across the flow. Numerical integrations show that the most important parameter determining whether this wave appears is the departure from criticality, with the wave appearing in slightly subcritical flows but being destroyed by two-dimensional effects behind even quite long ridges in even moderately subcritical flow. The wave appears after the flow has passed through a transition from subcritical to supercritical over the obstacle and its leading and trailing edges resemble dissipationless leaps standing in supercritical flow. Two-dimensional steady supercritical flows are related to one-dimensional unsteady flows with time in the unsteady flow associated with a slow cross-stream variable in the two-dimensional flows. Thus the wide cross-stream extent of the table-top wave appears to derive from the combination of its occurrence in a supercritical region embedded in the subcritical flow and the propagation without change of form of table-top waves in one-dimensional unsteady flow. The table-top wave here is associated with a resonant steepening of the transition above the obstacle and a consequent twelve-fold increase in drag. Remarkably, the table-top wave is generated equally strongly and extends laterally equally as far behind an axisymmetric obstacle as behind a ridge and so leads to subcritical flows differing significantly from linear predictions.


Sign in / Sign up

Export Citation Format

Share Document