On bending consistency of Timoshenko beam using differential and integral nonlocal strain gradient models

Author(s):  
Pei‐Liang Bian ◽  
Hai Qing
2018 ◽  
Vol 25 (1) ◽  
pp. 203-218 ◽  
Author(s):  
Reza Bahaadini ◽  
Ali Reza Saidi ◽  
Mohammad Hosseini

A nonlocal strain gradient Timoshenko beam model is developed to study the vibration and instability analysis of the carbon nanotubes conveying nanoflow. The governing equations of motion and boundary conditions are derived by employing Hamilton’s principle, including the effects of moving fluid, material length scale and nonlocal parameters, Knudsen number and gravity force. The material length scale and nonlocal parameters are considered, in order to take into account the size effects. Also, to consider the small-size effects on the flow field, the Knudsen number is used as a discriminant parameter. The Galerkin approach is chosen to analyze the governing equations under clamped–clamped, clamped–hinged and hinged–hinged boundary conditions. It is found that the natural frequency and critical fluid velocity can be decreased by increasing the nonlocal parameter or decreasing the material length scale parameter. Furthermore, it is revealed that the critical flow velocity does not affected by two size-dependent parameters and various boundary conditions in the free molecular flow regime.


2020 ◽  
Vol 7 (6) ◽  
pp. 685-699 ◽  
Author(s):  
Subrat Kumar Jena ◽  
S Chakraverty ◽  
Mohammad Malikan

Abstract This article is dedicated to analyzing the buckling behavior of nanobeam subjected to hygrothermal environments based on the principle of the Timoshenko beam theory. The hygroscopic environment has been considered as a linear stress field model, while the thermal environment is assumed to be a nonlinear stress field based on the Murnaghan model. The size-dependent effect of the nanobeam is captured by the nonlocal strain gradient theory (NSGT), and the governing equations of the proposed model have been derived by implementing a variational principle. The critical buckling loads have been calculated for the hinged–hinged boundary condition by incorporating the Navier approach and considering other elasticity theories such as classical elasticity theory, Eringen nonlocal elasticity theory, and strain gradient theory along with the NSGT. The present model is also validated with the pre-existing model in exceptional cases. Further, a parametric investigation has been performed to report the influence of various scaling parameters like hygroscopic environment, thermal environment, length-to-diameter ratio, small scale parameter, and length scale parameter on critical buckling loads by considering both the linear and nonlinear temperature distributions.


Sign in / Sign up

Export Citation Format

Share Document