Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism

Anaerobe ◽  
1998 ◽  
Vol 4 (6) ◽  
pp. 277-282 ◽  
Author(s):  
John D. Coates ◽  
Terry Councell ◽  
Debra J. Ellis ◽  
Derek R. Lovley
1972 ◽  
Vol 27 (02) ◽  
pp. 263-271 ◽  
Author(s):  
I. A. Cooper ◽  
P Cochrane ◽  
B. G. Firkin ◽  
K. J. Pinkard

SummaryIt has been suggested that human platelets possess the ability to phagocytose particulate matter similar to the polymorphonuclear leukocyte. However some difference of opinion has arisen regarding this contention, particularly as differences have been demonstrated with regard to the observed metabolic changes occurring in platelets related to such a process.The experiments reported in this paper were designed to observe the aerobic and anaerobic metabolism in human platelets during and following interiorization of two different particles, viz. polystyrene latex and thorotrast. The results of these experiments show a marked difference between both types of particles with regard to observable metabolic changes despite the rapid interiorization of both types of material. Some alteration occurs in both aerobic and anaerobic metabolism a considerable time after interiorization of latex, whereas no alteration could be demonstrated after interiorization of thorotrast. It is suggested that the interiorization of particulate matter is by some process other than phagocytosis and that observed metabolic changes related to latex may be due to a release reaction.


2015 ◽  
Vol 8 (2) ◽  
pp. 101-108 ◽  
Author(s):  
Ignacio Irazoqui ◽  
Alfonso Rodriguez ◽  
Estefanía Birriel ◽  
Martin Gabay ◽  
Maria Lavaggi ◽  
...  

Author(s):  
Kali M Horn ◽  
Michelle E Fournet ◽  
Kaitlin A Liautaud ◽  
Lynsey N Morton ◽  
Allie M Cyr ◽  
...  

Abstract The intertidal zone is characterized by persistent, tidally-driven fluctuations in both abiotic (e.g., temperature, [O2], salinity) and biotic (e.g., food availability, predation) factors, which make this a physiologically challenging habitat for resident organisms. The relative magnitude and degree of variability of environmental stress differs between intertidal zones, with the most extreme physiological stress often being experienced by organisms in the high intertidal. Given that so many of the constantly shifting parameters in this habitat are primary drivers of metabolic rate (e.g., temperature, [O2], food availability), we hypothesized that sessile conspecifics residing in different tidal zones would exhibit distinct ‘metabolic phenotypes,’ a term we use to collectively describe the organisms’ baseline metabolic performance and capacity. To investigate this hypothesis, we collected acorn barnacles (Balanus glandula) from low, mid, and high intertidal positions in San Luis Obispo Bay, CA and measured a suite of biochemical (whole-animal citrate synthase (CS) and lactate dehydrogenase (LDH) activity, aerial [D-lactate]), physiological (O2 consumption rates), morphological (body size) and behavioral (e.g., cirri beat frequency, % time operculum open) indices of metabolism. We found tidal zone-dependent differences in B. glandula metabolism that primarily related to anaerobic capacity, cirral activity patterns and body size. Barnacles from the low intertidal tended to have a greater capacity for anaerobic metabolism (i.e., increased LDH activity, increased baseline [D-lactate]), have reduced cirral beating activity—and presumably reduced feeding—when submerged, and be smaller in size compared to conspecifics in the high intertidal. We did not, however, see any D-lactate accumulation in barnacles from any tidal height throughout the 96 h of air exposure. This trend indicates that the enhanced capacity of low intertidal barnacles for anaerobic metabolism may have evolved to support metabolism during more prolonged episodes of emersion or during events other than emersion (e.g., coastal hypoxia, predation). There were also no significant differences in CS activity or baseline oxygen consumption rates (in air or seawater at 14˚C) across tidal heights, which implies that aerobic metabolic capacity may not be as sensitive to tidal position as anaerobic processes. Understanding how individuals occupying different shore heights differ in their metabolic capacity becomes increasingly interesting in the context of global climate change, given that the intertidal zone is predicted to experience even greater extremes in abiotic stress.


2021 ◽  
Author(s):  
Sayalee Joshi ◽  
Aide Robles ◽  
Samuel Aguiar ◽  
Anca G. Delgado

AbstractChain elongation is a growth-dependent anaerobic metabolism that combines acetate and ethanol into butyrate, hexanoate, and octanoate. While the model microorganism for chain elongation, Clostridium kluyveri, was isolated from a saturated soil sample in the 1940s, chain elongation has remained unexplored in soil environments. During soil fermentative events, simple carboxylates and alcohols can transiently accumulate up to low mM concentrations, suggesting in situ possibility of microbial chain elongation. Here, we examined the occurrence and microbial ecology of chain elongation in four soil types in microcosms and enrichments amended with chain elongation substrates. All soils showed evidence of chain elongation activity with several days of incubation at high (100 mM) and environmentally relevant (2.5 mM) concentrations of acetate and ethanol. Three soils showed substantial activity in soil microcosms with high substrate concentrations, converting 58% or more of the added carbon as acetate and ethanol to butyrate, butanol, and hexanoate. Semi-batch enrichment yielded hexanoate and octanoate as the most elongated products and microbial communities predominated by C. kluyveri and other Firmicutes genera not known to undergo chain elongation. Collectively, these results strongly suggest a niche for chain elongation in anaerobic soils that should not be overlooked in soil microbial ecology studies.


2014 ◽  
Vol 99 (5) ◽  
pp. 350-362 ◽  
Author(s):  
Katrin Wendt-Potthoff ◽  
Christin Kloß ◽  
Martin Schultze ◽  
Matthias Koschorreck

2016 ◽  
Vol 41 (7) ◽  
pp. 719-727 ◽  
Author(s):  
Michael J. Ormsbee ◽  
Katherine A. Gorman ◽  
Elizabeth A. Miller ◽  
Daniel A. Baur ◽  
Lisa A. Eckel ◽  
...  

The timing of morning endurance competition may limit proper pre-race fueling and resulting performance. A nighttime, pre-sleep nutritional strategy could be an alternative method to target the metabolic and hydrating needs of the early morning athlete without compromising sleep or gastrointestinal comfort during exercise. Therefore, the purpose of this investigation was to examine the acute effects of pre-sleep chocolate milk (CM) ingestion on next-morning running performance, metabolism, and hydration status. Twelve competitive female runners and triathletes (age, 30 ± 7 years; peak oxygen consumption, 53 ± 4 mL·kg−1·min−1) randomly ingested either pre-sleep CM or non-nutritive placebo (PL) ∼30 min before sleep and 7–9 h before a morning exercise trial. Resting metabolic rate (RMR) was assessed prior to exercise. The exercise trial included a warm-up, three 5-min incremental workloads at 55%, 65%, and 75% peak oxygen consumption, and a 10-km treadmill time trial (TT). Physiological responses were assessed prior, during (incremental and TT), and postexercise. Paired t tests and magnitude-based inferences were used to determine treatment differences. TT performances were not different (“most likely trivial” improvement with CM) between conditions (PL: 52.8 ± 8.4 min vs CM: 52.8 ± 8.0 min). RMR was “likely” increased (4.8%) and total carbohydrate oxidation (g·min−1) during exercise was “possibly” or likely increased (18.8%, 10.1%, 9.1% for stage 1–3, respectively) with CM versus PL. There were no consistent changes to hydration indices. In conclusion, pre-sleep CM may alter next-morning resting and exercise metabolism to favor carbohydrate oxidation, but effects did not translate to 10-km running performance improvements.


Sign in / Sign up

Export Citation Format

Share Document