carbohydrate oxidation
Recently Published Documents


TOTAL DOCUMENTS

326
(FIVE YEARS 48)

H-INDEX

40
(FIVE YEARS 3)

Author(s):  
Cory W Dugan ◽  
Shane K Maloney ◽  
Kristina J Abramoff ◽  
Sohan S Panag ◽  
Elizabeth A Davis ◽  
...  

Abstract Context Current exercise guidelines for individuals with type 1 diabetes (T1D) do not consider the impact that high altitude may have on blood glucose levels (BGL) during exercise. Objective To investigate the effect of acute hypoxia (simulated high altitude) on BGL and carbohydrate oxidation rates during moderate intensity exercise in individuals with T1D. Methods Using a counterbalanced, repeated measures study design, 7 individuals with T1D completed two exercise sessions; normoxia and hypoxia (~4,200m simulated altitude). Participants cycled for 60min on an ergometer at 45% of their sea-level V̇O2peak, and then recovered for 60min. Before, during and after exercise, blood samples were taken to measure glucose, lactate and insulin levels. Respiratory gases were collected to measure carbohydrate oxidation rates. Results Early during exercise (<30min), there was no fall in BGL in either condition. After one hour of exercise and during recovery, BGL were significantly lower under the hypoxic condition compared to both pre-exercise levels (p=0.008) and the normoxic condition (p=0.027). Exercise in both conditions resulted in a significant rise in carbohydrate oxidation rates, which returned to baseline levels post-exercise. Before, during and after exercise, carbohydrate oxidation rates were higher under the hypoxic compared with the normoxic condition (p<0.001). Conclusions The greater decline in BGL during and after exercise performed under acute hypoxia suggests that exercise during acute exposure to high altitude may increase the risk of hypoglycemia in individuals with T1D. Future guidelines may have to consider the impact altitude has on exercise-mediated hypoglycemia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Isabel van Ackern ◽  
Ramona Wulf ◽  
Dirk Dannenberger ◽  
Armin Tuchscherer ◽  
Björn Kuhla

AbstractEndocannabinoids, particularly anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are instrumental in regulating energy homeostasis and stress response. However, little is known about the endocannabinoid system (ECS) in ruminants, although EC could improve dairy health and productivity, at least by increasing feed intake. In this study, we report if intraperitoneal (i.p.) AEA and 2-AG administration affects feed intake, whole-body macronutrient metabolism, isolation and restraint stress, and whether diet composition modulates circulating endocannabinoid concentrations in cows. Twenty Simmental cows in late lactation were fed a grass silage and a corn silage based diet. On each diet, cows received daily i.p. injections with either AEA (5 µg/kg; n = 7), 2-AG (2.5 µg/kg; n = 6) or saline (n = 7) for 8 days. Endocannabinoid administration for 5 days under free-ranging (non-stressed) conditions had no effect on feed intake or energy balance, but attenuated the stress-induced suppression of feed intake when housing changed to individual tie-stalls without social or tactile interaction. Endocannabinoids increased whole-body carbohydrate oxidation, reduced fat oxidation, and affected plasma non-esterified fatty acid concentrations and fatty acid contents of total lipids. There was no effect of endocannabinoids on plasma triglyceride concentrations or hepatic lipogenesis. Plasma AEA concentrations were not affected by diet, however, plasma 2-AG concentrations tended to be lower on the corn silage based diet. In conclusion, endocannabinoids attenuate stress-induced hypophagia, increase short-term feed intake and whole-body carbohydrate oxidation and decrease whole-body fat oxidation in cows.


2021 ◽  
pp. 026010602110574
Author(s):  
Regis C. Pearson ◽  
Edward S. Green ◽  
Alyssa A. Olenick ◽  
Nathan T. Jenkins

Aim: We compared the impact of artificially- and sugar-sweetened beverages co-ingested with a mixed meal on postprandial fat and carbohydrate oxidation, blood glucose, and plasma insulin and triglyceride concentrations. Methods: Eight college-aged, healthy males completed three randomly assigned trials, which consisted of a mixed macronutrient meal test with 20oz of Diet-Coke (AS), Coca-Cola (NS), or water (CON). One week separated each trial and each participant served as his own control. Resting energy expenditure (REE) via indirect calorimetry, blood pressure, and blood samples were obtained immediately before, 5, 10, 30, 60, 120, and 180 min after meal and beverage ingestion. A two-way (treatment × time) repeated-measures ANOVA was conducted to assess REE, fat and carbohydrate oxidation rates, blood glucose, and plasma insulin and triglyceride concentrations. Results: There was a significant main effect of treatment on total fat oxidation (P = 0.006), fat oxidation was significantly higher after AS (P = 0.006) and CON (P = 0.001) compared to following NS. There was a significant main effect of treatment on total carbohydrate oxidation (P = 0.005), carbohydrate oxidation was significantly lower after AS (P = 0.014) and CON (P = 0.001) compared to following NS. Plasma insulin concentration AUC was significantly lower after AS (P = 0.019) and trended lower in CON (P = 0.054) compared to following NS. Conclusion: Ingestion of a mixed meal with an artificially-sweetened beverage does not impact postprandial metabolism, whereas a sugar-sweetened beverage suppresses fat oxidation and increases carbohydrate oxidation compared to artificially-sweetened beverage and water.


Metabolites ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 750
Author(s):  
Marie-Pierre Schippers ◽  
Oswaldo Ramirez ◽  
Margarita Arana ◽  
Grant B. McClelland

Exercise is an important performance trait in mammals and variation in aerobic capacity and/or substrate allocation during submaximal exercise may be important for survival at high altitude. Comparisons between lowland and highland populations is a fruitful approach to understanding the mechanisms for altitude differences in exercise performance. However, it has only been applied in very few highland species. The leaf-eared mice (LEM, genus Phyllotis) of South America are a promising taxon to uncover the pervasiveness of hypoxia tolerance mechanisms. Here we use lowland and highland populations of Andean and Lima LEM (P. andium and P. limatus), acclimated to common laboratory conditions, to determine exercise-induced maximal oxygen consumption (V˙O2max), and submaximal exercise metabolism. Lowland and highland populations of both species showed no difference in V˙O2max running in either normoxia or hypoxia. When run at 75% of V˙O2max, highland Andean LEM had a greater reliance on carbohydrate oxidation to power exercise. In contrast, highland Lima LEM showed no difference in exercise fuel use compared to their lowland counterparts. The higher carbohydrate oxidation seen in highland Andean LEM was not explained by maximal activities of glycolytic enzymes in the gastrocnemius muscle, which were equivalent to lowlanders. This result is consistent with data on highland deer mouse populations and suggests changes in metabolic regulation may explain altitude differences in exercise performance.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 553
Author(s):  
Inkwon Jang ◽  
Jisu Kim ◽  
Sunghwan Kyun ◽  
Deunsol Hwang ◽  
Kiwon Lim

In this study, we investigated the effects of exogenous lactate administration before exercise on energy substrate utilization during exercise. Mice were divided into exercise control (EX) and exercise with lactate intake (EXLA) groups; saline/lactate was administered 30 min before exercise. Respiratory gas was measured during moderate intensity treadmill exercise (30 min). Immediately after exercise, blood, liver, and skeletal muscle samples were collected and mRNA levels of energy metabolism-related and metabolic factors were analyzed. At 16–30 min of exercise, the respiratory exchange ratio (p = 0.045) and carbohydrate oxidation level (p = 0.014) were significantly higher in the EXLA than in the EX group. Immediately after exercise, the muscle and liver glycogen content and blood glucose level of the EXLA group were lower than those of the EX group. In addition, muscle mRNA levels of HK2 (hexokinase 2; p = 0.009), a carbohydrate oxidation-related factor, were higher in the EXLA than in the EX group, whereas the expression of PDK4 (pyruvate dehydrogenase kinase 4; p = 0.001), CS (citrate synthase; p = 0.045), and CD36 (cluster of differentiation 36; p = 0.002), factors related to oxidative metabolism, was higher in the EX than in the EXLA group. These results suggest that lactate can be used in various research fields to promote carbohydrate metabolism.


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 783
Author(s):  
Adolfo Aracil-Marco ◽  
José Manuel Sarabia ◽  
Diego Pastor ◽  
Silvia Guillén ◽  
Raúl López-Grueso ◽  
...  

This study aimed to explore if the acute variations in plasma concentration of α-calcitonin gene-related peptide (αCGRP) induced by a single maximal exercise bout may be associated to cardiorespiratory fitness and carbohydrate oxidation in humans. Twelve young adult Caucasian men (24.3 ± 0.9 years-old; 179.2 ± 1.9 cm of height; 23.9 ± 0.6 kg·m−2 body mass index) performed a graded exercise test. A venous catheter was placed before testing, and blood samples were taken at baseline, maximal effort and recovery. αCGRP was measured in plasma using a commercial double-sandwich enzyme-linked-immunoassay. A two-way repeated measurements ANOVA was used to compare the values obtained at baseline, maximal effort and recovery. In the whole sample, αCGRP increased at maximal effort and its concentration correlated directly, albeit non-significantly, with the muscle mass normalised VO2, VCO2, carbohydrate oxidation and relative power. Two thirds of the participants showed an increase in αCGRP concentration at maximal effort. Post hoc analysis showed that in these individuals, the muscle mass normalised VO2, VCO2, carbohydrate oxidation rate and relative power were higher than in the participants lacking this molecular response. Therefore, our data suggest that (a) a majority of young men respond to exercise with an increase in blood αCGRP concentration; and (b) individuals exhibiting this response also show a higher cardiorespiratory fitness, carbohydrate oxidation and work performed. These findings suggest that this neuropeptide could act as an exerkine with potential effects on physical performance.


Author(s):  
Yung-Chih Chen ◽  
Russell G Davies ◽  
Aaron Hengist ◽  
Harriet A Carroll ◽  
Oliver J Perkin ◽  
...  

It is unclear whether NeuroMuscular Electrical Stimulation (NMES) has meaningful metabolic effects when users have the opportunity to self-select the intensity to one that can be comfortably tolerated. Nine healthy men aged 28 ± 9 y (mean ± SD) with a body mass index 22.3 ± 2.3 kg/m2 completed 3 trials involving a 2-h oral glucose tolerance test whilst, in a randomized counterbalanced order, (1) sitting motionless (SIT), (2) standing motionless (STAND); and (3) sitting motionless with NMES of quadriceps and calves at a self-selected tolerable intensity. Mean (95% confidence interval [CI]) total energy expenditure was greater in the NMES trial (221 [180–262] kcal/2 h) and STAND trial (178 [164–191] kcal/2 h) than during SIT (159 [150–167] kcal/2 h) (both, p < 0.05). This was primarily driven by an increase in carbohydrate oxidation in the NMES and STAND trials compared to SIT (p < 0.05). Postprandial insulin iAUC was lower in both NMES and STAND compared to SIT (16.4 [7.7–25.1], 17 [7–27] & 22.6 [10.8–34.4] nmol·120 min/L, respectively; both, p < 0.05). Compared with sitting, both NMES and STAND increased energy expenditure and whole-body carbohydrate oxidation and reduced postprandial insulin concentrations in healthy men, with more-pronounced effects seen with NMES. Self-selected NMES is a potential strategy to improve metabolic health. This trial is registered at ClinicalTrials.gov (ID: NCT04389736). Novelty • NMES at a comfortable intensity enhances energy expenditure & carbohydrate oxidation and reduces postprandial insulinemia. • Thus, self-selected NMES represents a potential strategy to improve metabolic health.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Joshua T. Rowe ◽  
Roderick F. G. J. King ◽  
Andy J. King ◽  
Douglas J. Morrison ◽  
Thomas Preston ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document