Initial evolution of warning coloration: comments on the novel world method

2000 ◽  
Vol 60 (1) ◽  
pp. F1-F2 ◽  
Author(s):  
Rauno V. Alatalo ◽  
Johanna Mappes
Author(s):  
Graeme D. Ruxton ◽  
William L. Allen ◽  
Thomas N. Sherratt ◽  
Michael P. Speed

Aposematism is the pairing of two kinds of defensive phenotype: an often repellent secondary defence that typically renders prey unprofitable to predators if they attack them and some evolved signal that indicates the presence of that defence. Aposematic signals often work to modify the behaviours of predators both before and during attacks. Warning coloration, for example, may increase wariness and hence improve the chances that a chemically defended prey is released unharmed after an attack. An aposematic signal may therefore first tend to reduce the probability that a predator commences attack (a primary defence) and then (as a component of secondary defence) reduce the probability that the prey is injured or killed during any subsequent attack. In this chapter we will consider both the primary and the secondary effects of aposematic signals on prey protection. We begin first by describing the common features of aposematic signals and attempting to show the wide use to which aposematic signalling is deployed across animals (and perhaps plants too). We then review the interesting evolutionary issues aposematic signals raise, including their initial evolution and their integration with sexual and other signals. We also discuss important ecological, co-evolutionary, and macroevolutionary consequences of aposematism.


2011 ◽  
Vol 279 (1728) ◽  
pp. 417-426 ◽  
Author(s):  
Martin Stevens ◽  
Graeme D. Ruxton

Many animals are toxic or unpalatable and signal this to predators with warning signals (aposematism). Aposematic appearance has long been a classical system to study predator–prey interactions, communication and signalling, and animal behaviour and learning. The area has received considerable empirical and theoretical investigation. However, most research has centred on understanding the initial evolution of aposematism, despite the fact that these studies often tell us little about the form and diversity of real warning signals in nature. In contrast, less attention has been given to the mechanistic basis of aposematic markings; that is, ‘what makes an effective warning signal?’, and the efficacy of warning signals has been neglected. Furthermore, unlike other areas of adaptive coloration research (such as camouflage and mate choice), studies of warning coloration have often been slow to address predator vision and psychology. Here, we review the current understanding of warning signal form, with an aim to comprehend the diversity of warning signals in nature. We present hypotheses and suggestions for future work regarding our current understanding of several inter-related questions covering the form of warning signals and their relationship with predator vision, learning, and links to broader issues in evolutionary ecology such as mate choice and speciation.


2000 ◽  
Vol 59 (2) ◽  
pp. 281-287 ◽  
Author(s):  
Birgitta S. Tullberg ◽  
Olof Leimar ◽  
Gabriella Gamberale- Stille

2010 ◽  
Vol 34 (8) ◽  
pp. S33-S33
Author(s):  
Wenchao Ou ◽  
Haifeng Chen ◽  
Yun Zhong ◽  
Benrong Liu ◽  
Keji Chen

Sign in / Sign up

Export Citation Format

Share Document