scholarly journals Male and Female Cooperate in the Prohormone-like Processing of a Drosophila melanogaster Seminal Fluid Protein

1995 ◽  
Vol 171 (2) ◽  
pp. 694-702 ◽  
Author(s):  
Morgan Park ◽  
Mariana F. Wolfner
Genetics ◽  
1999 ◽  
Vol 153 (2) ◽  
pp. 845-857 ◽  
Author(s):  
Deborah M Neubaum ◽  
Mariana F Wolfner

Abstract Mated females of many animal species store sperm. Sperm storage profoundly influences the number, timing, and paternity of the female’s progeny. To investigate mechanisms for sperm storage in Drosophila melanogaster, we generated and analyzed mutations in Acp36DE. Acp36DE is a male seminal fluid protein whose localization in mated females suggested a role in sperm storage. We report that male-derived Acp36DE is essential for efficient sperm storage by females. Acp36DE1 (null) mutant males produced and transferred normal amounts of sperm and seminal fluid proteins. However, mates of Acp36DE1 males stored only 15% as many sperm and produced 10% as many adult progeny as control-mated females. Moreover, without Acp36DE, mated females failed to maintain an elevated egg-laying rate and decreased receptivity, behaviors whose persistence (but not initiation) normally depends on the presence of stored sperm. Previous studies suggested that a barrier in the oviduct confines sperm and Acp36DE to a limited area near the storage organs. We show that Acp36DE is not required for barrier formation, but both Acp36DE and the barrier are required for maximal sperm storage. Acp36DE associates tightly with sperm. Our results indicate that Acp36DE is essential for the initial storage of sperm, and that it may also influence the arrangement and retention of stored sperm.


Genetics ◽  
1997 ◽  
Vol 147 (1) ◽  
pp. 231-242 ◽  
Author(s):  
Lucas Sánchez ◽  
Pedro Santamaria

Abstract This article reports the breaking of ethological barriers through the constitution of soma-germ line chimeras between species of the melanogaster subgroup of Drosophila, which are ethologically isolated. Female Drosophila yakuba and D. teissieri germ cells in a D. melanogaster ovary produced functional oocytes that, when fertilized by D. melanogaster sperm, gave rise to sterile yakuba-melanogaster andteissieri-melanogaster male and female hybrids. However, the erecta-melanogaster and orena-melanogaster hybrids were lethal, since female D. erecta and D. orena germ cells in a D. melanogaster ovary failed to form oocytes with the capacity to develop normally. This failure appears to be caused by an altered interaction between the melanogaster soma and the erecta and orena germ lines. Germ cells of D. teissieri and D. orena in a D. melanogaster testis produced motile sperm that was not stored in D. melanogaster females. This might be due to incompatibility between the teissieri and orena sperm and the melanogaster seminal fluid. A morphological analysis of the terminalia of yakuba-melanogaster and teissieri-melanogaster hybrids was performed. The effect on the terminalia of teissieri-melanogaster hybrids of a mutation in doublesex, a regulatory gene that controls the development of the terminalia, was also investigated.


2021 ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Klaus Reinhardt

AbstractSperm aging is accelerated by the buildup of reactive oxygen species (ROS), which cause oxidative damage to various cellular components. Aging can be slowed by limiting the production of mitochondrial ROS and by increasing the production of antioxidants, both of which can be generated in the sperm cell itself or in the surrounding somatic tissues of the male and female reproductive tracts. However, few studies have compared the separate contributions of ROS production and ROS scavenging to sperm aging, or to cellular aging in general. We measured reproductive fitness in two lines of Drosophila melanogaster genetically engineered to (1) produce fewer ROS via expression of alternative oxidase (AOX), an alternative respiratory pathway; or (2) scavenge fewer ROS due to a loss-of-function mutation in the antioxidant gene dj-1β. Wild-type females mated to AOX males had increased fecundity and longer fertility durations, consistent with slower aging in AOX sperm. Contrary to expectations, fitness was not reduced in wild-type females mated to dj-1β males. Fecundity and fertility duration were increased in AOX and decreased in dj-1β females, indicating that female ROS levels may affect aging rates in stored sperm and/or eggs. Finally, we found evidence that accelerated aging in dj-1β sperm may have selected for more frequent mating. Our results help to clarify the relative roles of ROS production and ROS scavenging in the male and female reproductive systems.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 195-204 ◽  
Author(s):  
Michael J Simmons ◽  
Kevin J Haley ◽  
Craig D Grimes ◽  
John D Raymond ◽  
Jarad B Niemi

Abstract Drosophila were genetically transformed with a hobo transgene that contains a terminally truncated but otherwise complete P element fused to the promoter from the Drosophila hsp70 gene. Insertions of this H(hsp/CP) transgene on either of the major autosomes produced the P transposase in both the male and female germlines, but not in the soma. Heat-shock treatments significantly increased transposase activity in the female germline; in the male germline, these treatments had little effect. The transposase activity of two insertions of the H(hsp/CP) transgene was not significantly greater than their separate activities, and one insertion of this transgene reduced the transposase activity of P(ry+, Δ2-3)99B, a stable P transgene, in the germline as well as in the soma. These observations suggest that, through alternate splicing, the H(hsp/CP) transgene produces a repressor that feeds back negatively to regulate transposase expression or function in both the somatic and germline tissues. The H(hsp/CP) transgenes are able to induce gonadal dysgenesis when the transposase they encode has P-element targets to attack. However, this ability and the ability to induce P-element excisions are repressed by the P cytotype, a chromosomal/cytoplasmic state that regulates P elements in the germline.


Science ◽  
1958 ◽  
Vol 127 (3296) ◽  
pp. 473-474 ◽  
Author(s):  
W. D. KAPLAN ◽  
J. T. HOLDEN ◽  
B. HOCHMAN

Sign in / Sign up

Export Citation Format

Share Document