cellular aging
Recently Published Documents


TOTAL DOCUMENTS

710
(FIVE YEARS 230)

H-INDEX

58
(FIVE YEARS 8)

Author(s):  
Dong Suk Yoon ◽  
Kyoung-Mi Lee ◽  
Yoorim Choi ◽  
Eun Ae Ko ◽  
Na-Hyun Lee ◽  
...  

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 266
Author(s):  
Akemi T. Wijayabahu ◽  
Angela M. Mickle ◽  
Volker Mai ◽  
Cynthia Garvan ◽  
Toni L. Glover ◽  
...  

Elevated inflammatory cytokines and chronic pain are associated with shorter leukocyte telomere length (LTL), a measure of cellular aging. Micronutrients, such as 25-hydroxyvitamin D (vitamin D) and omega 3, have anti-inflammatory properties. Little is known regarding the relationships between vitamin D, omega 6:3 ratio, LTL, inflammation, and chronic pain. We investigate associations between vitamin D, omega 6:3 ratio, LTL, and C-reactive protein (CRP) in people living with/without chronic pain overall and stratified by chronic pain status. A cross-sectional analysis of 402 individuals (63% women, 79.5% with chronic pain) was completed. Demographic and health information was collected. Chronic pain was assessed as pain experienced for at least three months. LTL was measured in genomic DNA isolated from blood leukocytes, and micronutrients and CRP were measured in serum samples. Data were analyzed with general linear regression. Although an association between the continuous micronutrients and LTL was not observed, a positive association between omega 6:3 ratio and CRP was detected. In individuals with chronic pain, based on clinical categories, significant associations between vitamin D, omega 6:3 ratio, and CRP were observed. Findings highlight the complex relationships between anti-inflammatory micronutrients, inflammation, cellular aging, and chronic pain.


2022 ◽  
Vol 226 (1) ◽  
pp. S646
Author(s):  
Danielle M. Panelli ◽  
Xiaobin Wang ◽  
Ronald J. Wong ◽  
Giovanna Cruz ◽  
Xiumei Hong ◽  
...  

2022 ◽  
Author(s):  
Rosalinda Madonna

Ischemic heart disease and heart failure (HF) remain the leading causes of death worldwide. The inability of the adult heart to regenerate itself following ischemic injury and subsequent scar formation may explain the poor prognosis in these patients, especially when necrosis is extensive and leads to severe left ventricular dysfunction. Under physiological conditions, the crosstalk between cardiomyocytes and cardiac interstitial/vascular cells plays a pivotal role in cardiac processes by limiting ischemic damage or promoting repair processes, such as angiogenesis, regulation of cardiac metabolism, and the release of soluble paracrine or endocrine factors. Cardiovascular risk factors are the main cause of accelerated senescence of cardiomyocytes and cardiac stromal cells (CSCs), causing the loss of their cardioprotective and repairing functions. CSCs are supportive cells found in the heart. Among these, the pericytes/mural cells have the propensity to differentiate, under appropriate stimuli in vitro, into adipocytes, smooth muscle cells, osteoblasts, and chondroblasts, as well as other cell types. They contribute to normal cardiac function and have an antifibrotic effect after ischemia. Diabetes represents a condition of accelerated senescence. Among the new pharmacological armamentarium with hypoglycemic effect, gliflozins have been shown to reduce the incidence of HF and re-hospitalization, probably through the anti-remodeling and anti-senescent effect on the heart, regardless of diabetes. Therefore, either reducing the senescence of CSC or removing senescent cells from the infarcted heart could represent future antisenescence strategies capable of preventing the deterioration of heart function leading to HF.


Author(s):  
Olga Gómez ◽  
Giuliana Perini-Villanueva ◽  
Andrea Yuste ◽  
José Antonio Rodríguez-Navarro ◽  
Enric Poch ◽  
...  

Autophagy is a fine-tuned proteolytic pathway that moves dysfunctional/aged cellular components into the lysosomal compartment for degradation. Over the last 3 decades, global research has provided evidence for the protective role of autophagy in different brain cell components. Autophagic capacities decline with age, which contributes to the accumulation of obsolete/damaged organelles and proteins and, ultimately, leads to cellular aging in brain tissues. It is thus well-accepted that autophagy plays an essential role in brain homeostasis, and malfunction of this catabolic system is associated with major neurodegenerative disorders. Autophagy function can be modulated by different types of stress, including glycative stress. Glycative stress is defined as a cellular status with abnormal and accelerated accumulation of advanced glycation end products (AGEs). It occurs in hyperglycemic states, both through the consumption of high-sugar diets or under metabolic conditions such as diabetes. In recent years, glycative stress has gained attention for its adverse impact on brain pathology. This is because glycative stress stimulates insoluble, proteinaceous aggregation that is linked to the malfunction of different neuropathological proteins. Despite the emergence of new literature suggesting that autophagy plays a major role in fighting glycation-derived damage by removing cytosolic AGEs, excessive glycative stress might also negatively impact autophagic function. In this mini-review, we provide insight on the status of present knowledge regarding the role of autophagy in brain physiology and pathophysiology, with an emphasis on the cytoprotective role of autophagic function to ameliorate the adverse effects of glycation-derived damage in neurons, glia, and neuron-glia interactions.


2021 ◽  
Vol 20 (6) ◽  
pp. 96-102
Author(s):  
Ilmira R. Gilmutdinova ◽  
Irina S. Kudryashova ◽  
Elena Yu. Kostromina ◽  
Maksim Yu. Yakovlev ◽  
Inessa Kh. Yafarova ◽  
...  

From the biomedicine point of, view ageing is a natural process, characterized by a gradual decrease in the physiological integrity and adaptive abilities of the body, leading to a violation of its functions and an increase in the risk of death with age. Demographic aging of the population is a serious socio-economic problem, both in Russia and around the world. The main cellular and molecular signs of aging include genome instability, telomere shortening, epigenetic alterations, impaired proteostasis, impaired nutrient recognition, mitochondrial dysfunction, cellular aging, the stem cell pool depletion and changes in intercellular interaction, extracellular matrix rigidity, as well as activation of retrotransposons and chronic inflammation. For these reasons, in modern healthcare, preventing premature aging and treating age-related diseases is becoming a priority task. This review presents modern approaches to the quantitative assessment of the aging process using aging biomarkers as functional parameters reflecting the biological organism age at the molecular, cellular, and organismal levels. This work also considers the actual non-drug and drug interventions allowing to slow down the development of age-associated pathological processes, allowing you to increase the quality and duration of life.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 368-368
Author(s):  
Bradley Willcox ◽  
Kamal Masaki ◽  
Richard Allsopp ◽  
Kalpana Kallianpur

Abstract Human longevity is linked to genetic, cellular, and other complex biological and psychosocial traits. Aging is typically accompanied by gradual brain atrophy and cognitive decline, but the mechanisms are unclear. Cellular aging, characterized by telomere shortening and altered telomerase activity, is related to mortality and brain aging. Decelerated brain aging is associated with greater peripheral blood leukocyte telomere length (LTL) and, we hypothesize, may be linked to FOXO3 genotype. We will use MRI to assess brain structure and function cross-sectionally in 100 Kuakini Honolulu Heart Program Offspring. Atrophy and disrupted functional connectivity, markers of brain aging, will be examined in relation to FOXO3 and LTL. Associations between brain structural and functional differences, FOXO3 genotype and LTL will be investigated over a wide range of ages, controlling for other biological and psychosocial factors. Results may provide insight into mechanisms influencing the rate of brain aging, and may eventually extend human healthspan.


2021 ◽  
Vol 22 (23) ◽  
pp. 12807
Author(s):  
Kyung-Ha Lee ◽  
Do-Yeon Kim ◽  
Wanil Kim

Many diseases that involve malignant tumors in the elderly affect the quality of human life; therefore, the relationship between aging and pathogenesis in geriatric diseases must be under-stood to develop appropriate treatments for these diseases. Recent reports have shown that epigenetic regulation caused by changes in the local chromatin structure plays an essential role in aging. This review provides an overview of the roles of telomere shortening on genomic structural changes during an age-dependent shift in gene expression. Telomere shortening is one of the most prominent events that is involved in cellular aging and it affects global gene expression through genome rearrangement. This review provides novel insights into the roles of telomere shortening in disease-affected cells during pathogenesis and suggests novel therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document