Seasonal Variability of Sea Level and Sea-surface Temperature on the North-east Coast of New Zealand

1998 ◽  
Vol 46 (2) ◽  
pp. 307-318 ◽  
Author(s):  
R.G. Bell ◽  
D.G. Goring
Author(s):  
M.N Tsimplis ◽  
A.G.P Shaw ◽  
R.A Flather ◽  
D.K Woolf

The thermosteric contribution of the North Atlantic Oscillation (NAO) to the North Sea sea-level for the winter period is investigated. Satellite sea surface temperature as well as in situ measurements are used to define the sensitivity of winter water temperature to the NAO as well as to determine the trends in temperature. The sea surface temperature sensitivity to the NAO is about 0.85 °C per unit NAO, which results in thermosteric sea-level changes of about 1–2 cm per unit NAO. The sensitivity of sea surface temperatures to the NAO is strongly time-dependent. Model data from a two-dimensional hydrodynamic tide+surge model are used in combination with the estimated thermosteric anomalies to explain the observed sea-level changes and, in particular, the sensitivity of the datasets to the NAO variability. The agreement between the model and the observed data is improved by the inclusion of the thermosteric effect.


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Christopher R S Chambers ◽  
Gary B Brassington ◽  
Jinyu Sheng ◽  
Ian Simmonds ◽  
Kevin Walsh

Four east coast lows (ECLs) were simulated with the Weather Research and Forecast model to investigate the influence of the sea surface temperature (SST) distribution on the sea level pressure (SLP). Each ECL was simulated with two different SST datasets: the Bluelink SST field and NCEP skin temperature field. The former resolved eddies in the East Australian Current while the latter did not. The simulated SLP fields in the eddy-resolving SST runs were compared with those in the non-eddy-resolving SST runs. On time-scales of about 48 hours, higher SSTs were asso-ciated with lower SLPs. The spatial scale of the SLP response was similar to that of the ocean eddies, indicative of the rapidity and robustness of the response given the rapidly evolving conditions within the storms. On shorter time-scales, the SLP response to SST change can become substantially larger. The largest reductions in SLP in the eddy-resolving SST runs were associated with regions of deep atmospheric convection that warm the tropospheric column. These areas were shown to be related to the SST distribution with the greatest SLP reductions associated with convection over strong SST gradient regions. The landfall of a damaging convective mesoscale low pressure system on 8 June 2007 was also investigated. It was found that a region of strong SST gradients on the southern flank of a large warm ocean eddy was associated with lower pressures at the time of formation of this meso-low. In addition, the only case that simulated the low pressure at the correct time (albeit at not quite the correct location) was the eddy-resolved SST run. It was hy-pothesized that the development of this meso-low that impacted the coast around Newcastle, was enhanced because of the eddy-scale SST distribution at the time.


Sign in / Sign up

Export Citation Format

Share Document