scholarly journals 10 Points in Dimension 4 not Projectively Equivalent to the Vertices of a Convex Polytope

2001 ◽  
Vol 22 (5) ◽  
pp. 705-708 ◽  
Author(s):  
David Forge ◽  
Michel Las Vergnas ◽  
Peter Schuchert
Keyword(s):  
2020 ◽  
Vol 8 (1) ◽  
pp. 36-39
Author(s):  
Lei Cao ◽  
Ariana Hall ◽  
Selcuk Koyuncu

AbstractWe give a short proof of Mirsky’s result regarding the extreme points of the convex polytope of doubly substochastic matrices via Birkhoff’s Theorem and the doubly stochastic completion of doubly sub-stochastic matrices. In addition, we give an alternative proof of the extreme points of the convex polytopes of symmetric doubly substochastic matrices via its corresponding loopy graphs.


2020 ◽  
Vol 52 (4) ◽  
pp. 1249-1283
Author(s):  
Masatoshi Kimura ◽  
Tetsuya Takine

AbstractThis paper considers ergodic, continuous-time Markov chains $\{X(t)\}_{t \in (\!-\infty,\infty)}$ on $\mathbb{Z}^+=\{0,1,\ldots\}$ . For an arbitrarily fixed $N \in \mathbb{Z}^+$ , we study the conditional stationary distribution $\boldsymbol{\pi}(N)$ given the Markov chain being in $\{0,1,\ldots,N\}$ . We first characterize $\boldsymbol{\pi}(N)$ via systems of linear inequalities and identify simplices that contain $\boldsymbol{\pi}(N)$ , by examining the $(N+1) \times (N+1)$ northwest corner block of the infinitesimal generator $\textbf{\textit{Q}}$ and the subset of the first $N+1$ states whose members are directly reachable from at least one state in $\{N+1,N+2,\ldots\}$ . These results are closely related to the augmented truncation approximation (ATA), and we provide some practical implications for the ATA. Next we consider an extension of the above results, using the $(K+1) \times (K+1)$ ( $K > N$ ) northwest corner block of $\textbf{\textit{Q}}$ and the subset of the first $K+1$ states whose members are directly reachable from at least one state in $\{K+1,K+2,\ldots\}$ . Furthermore, we introduce new state transition structures called (K, N)-skip-free sets, using which we obtain the minimum convex polytope that contains $\boldsymbol{\pi}(N)$ .


1993 ◽  
Vol 47 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Alberto Seeger

We derive formulas for the Minkowski sum, the convex hull, the intersection, and the inverse sum of a finite family of ellipsoids. We show how these formulas can be used to obtain inner and outer ellipsoidal approximations of a convex polytope.


2021 ◽  
Author(s):  
Carlos Rodriguez-Pardo ◽  
Gaurav Sharma

<div>For multiprimary displays that have four or more primaries, a color may be reproduced using multiple alternative control vectors. We provide a complete characterization of the Metameric Control Set (MCS), i.e., the set of control vectors that reproduce a given color on the display. Specifically, we show that MCS is a convex polytope whose vertices are control vectors obtained from (parallelepiped) tilings of the gamut, i.e., the range of colors that the display can produce. The mathematical framework that we develop: (a) characterizes gamut tilings in terms of fundamental building blocks called facet spans, (b) establishes that the vertices of the MCS are fully characterized by the tilings of the gamut, and (c) introduces a methodology for the efficient enumeration of gamut tilings. The framework reveals the fundamental inter-relations between the geometry of the MCS and the geometry of the gamut developed in a companion Part I paper, and provides insight into alternative strategies for color control. Our characterization of tilings and the strategy for their enumeration also advance knowledge in geometry, providing new approaches and computational results for the enumeration of tilings for a broad class of zonotopes in R<sup>3</sup>.</div>


1998 ◽  
Vol 126 (8) ◽  
pp. 2433-2441 ◽  
Author(s):  
Jean B. Lasserre
Keyword(s):  

1995 ◽  
Vol 47 (3) ◽  
pp. 641-654 ◽  
Author(s):  
Egon Schulte ◽  
Asia Ivić Weiss

AbstractAbstract polytopes are discrete geometric structures which generalize the classical notion of a convex polytope. Chiral polytopes are those abstract polytopes which have maximal symmetry by rotation, in contrast to the abstract regular polytopes which have maximal symmetry by reflection. Chirality is a fascinating phenomenon which does not occur in the classical theory. The paper proves the following general extension result for chiral polytopes. If 𝒦 is a chiral polytope with regular facets 𝓕 then among all chiral polytopes with facets 𝒦 there is a universal such polytope 𝓟, whose group is a certain amalgamated product of the groups of 𝒦 and 𝓕. Finite extensions are also discussed.


2021 ◽  
Vol 289 ◽  
pp. 534-538
Author(s):  
Yaguang Yang
Keyword(s):  

1970 ◽  
Vol 22 (2) ◽  
pp. 265-287 ◽  
Author(s):  
P. McMullen ◽  
G. C. Shephard

During the last few years, Branko Grünbaum, Micha Perles, and others have made extensive use of Gale transforms and Gale diagrams in investigating the properties of convex polytopes. Up to the present, this technique has been applied almost entirely in connection with combinatorial and enumeration problems. In this paper we begin by showing that Gale transforms are also useful in investigating properties of an essentially metrical nature, namely the symmetries of a convex polytope. Our main result here (Theorem (10)) is that, in a manner that will be made precise later, the symmetry group of a polytope can be represented faithfully by the symmetry group of a Gale transform of its vertices. If a d-polytope P ⊂ Ed has an axis of symmetry A (that is, A is a linear subspace of Ed such that the reflection in A is a symmetry of P), then it is called axi-symmetric. Using Gale transforms we are able to determine, in a simple manner, the possible numbers and dimensions of axes of symmetry of axi-symmetric polytopes.


1964 ◽  
Vol 16 ◽  
pp. 602-614 ◽  
Author(s):  
Victor Klee

The distance between two vertices of a connected finite graph is the smallest number of edges forming a path that joins the two vertices, and the diameter of the graph is the largest integer which is realized as the distance between two vertices of the graph. We are concerned here with the diameters of two graphs associated with a d-dimensional convex polytope P (called henceforth a d-polytope). The graph Γ(P) of P is the 1- complex formed by the vertices and edges of P , and the polar graph II (P) of P is the 1-complex whose vertices correspond to the (d — 1)-faces of P, with two vertices joined by an edge in II (P) if and only if the corresponding (d — 1)- faces intersect in a (d — 2)-face of P. The diameters of Γ(P) and II (P) will be denoted respectively by δ(P) (called the diameter of P) and ϕ(Ps) (called the face-diameter of P ).


Sign in / Sign up

Export Citation Format

Share Document