Thermodynamic properties of pyridine—I. Vapor pressures, high-temperature heat capacities, densities, critical properties, derived thermodynamic functions, vibrational assignment, and derivation of recommended values

1996 ◽  
Vol 28 (8) ◽  
pp. 797-818 ◽  
Author(s):  
R.D. Chirico ◽  
W.V. Steele ◽  
A. Nguyen ◽  
T.D. Klots ◽  
S.E. Knipmeyer
1970 ◽  
Vol 92 (3) ◽  
pp. 301-309 ◽  
Author(s):  
G. Angelino ◽  
E. Macchi

The computation of power cycles employing carbon dioxide as working fluid and extending down to the critical region requires the knowledge of the thermodynamic properties of CO2 within a wide range of pressures and temperatures. Available data are recognized to be insufficient or insufficiently accurate chiefly in the vicinity of the critical dome. Newly published density and specific heat measurements are employed to compute thermodynamic functions at temperatures between 0 and 50 deg C, where the need of better data is more urgent. Methods for the computation of thermal properties from density measurement in the low and in the high temperature range are presented and discussed. Results are reported of the computation of entropy and enthalpy of CO2 in the range 150–750 deg C and 40–600 atm. The probable precision of the tables is inferred from an error analysis based on the generation, by means of a computer program of a set of pseudoexperimental points which, treated as actual measurements, yield useful information about the accuracy of the calculation procedure.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4470
Author(s):  
Jiangtao Song ◽  
Fei Yuan ◽  
Long Li ◽  
Yafei Guo ◽  
Tianlong Deng

The heat capacities on two minerals of hungchaoite (MgB4O7·9H2O, Hu) and mcallisterite (MgB6O10·7.5H2O, Mc) have been measured with a precision calorimeter at temperatures ranging from 306.15 to 355.15 K, experimentally. It was found that there are no phase transition and thermal anomalies, and the molar heat capacities against temperature for the minerals of hungchaoite and mcallisterite were fitted as C p , m , Hu   =   − 27019.23675 + 229.55286 T   −   0.63912 T   2   +   ( 5.95862   ×   10   − 4 )   T   3 and C p , mMc   =   − 9981.88552   +   84.10964 T   −   0.22685 T   2   +   ( 2.0593   ×   10   − 4 )   T   3 , respectively. The molar heat capacities and thermodynamic functions of (HT-H298.15), (ST-S298.15), and (GT-G298.15) at intervals of 1 K for the two minerals were obtained for the first time. These results are significant in order to understand the thermodynamic properties of those minerals existing in nature salt lakes, as well as applying them to the chemical engineering process design.


2017 ◽  
Vol 53 (1) ◽  
pp. 93-95 ◽  
Author(s):  
L. T. Denisova ◽  
L. A. Irtyugo ◽  
Yu. F. Kargin ◽  
V. V. Beletskii ◽  
V. M. Denisov

Sign in / Sign up

Export Citation Format

Share Document