Simultaneous Determination of Two-Phase Relative Permeability and Capillary Pressure of Porous Rocks from Steady-State Flow Experiments: Accounting for Gravitational Forces and Fluid Compressibility

1998 ◽  
Vol 204 (1) ◽  
pp. 205-213 ◽  
Author(s):  
Vladimir S. Mitlin ◽  
John D. McLennan ◽  
Sidney G. Green
SPE Journal ◽  
2010 ◽  
Vol 15 (04) ◽  
pp. 917-927 ◽  
Author(s):  
Thomas Ramstad ◽  
Pål-Eric Øren ◽  
Stig Bakke

Summary We present results from simulations of two-phase flow directly on digitized rock-microstructure images of porous media using a lattice Boltzmann (LB) method. The implemented method is performed on a D3Q19 lattice with fluid/fluid and fluid/solid interaction rules to handle interfacial tension and wetting properties. We demonstrate that the model accurately reproduces capillary and wetting effects in pores with a noncircular shape. The model is applied to study viscous coupling effects for two-phase concurrent annular flow in circular tubes. Simulated relative permeabilities for this case agree with analytical predictions and show that the nonwetting-phase relative permeability might greatly exceed unity when the wetting phase is less viscous than the nonwetting phase. Two-phase LB simulations are performed on microstructure images derived from X-ray microtomography and process-based reconstructions of Bentheimer sandstone. By imposing a flow regulator to control the capillary number of the flow, the LB model can closely mimic typical experimental setups, such as centrifuge capillary pressure and unsteady- and steady-state relative permeability measurements. Computed drainage capillary pressure curves are found to be in excellent agreement with experimental data. Simulated steady-state relative permeabilities at typical capillary numbers in the vicinity of 10−5 are in fair agreement with measured data. The simulations accurately reproduce the wetting-phase relative permeability but tend to underpredict the nonwetting-phase relative permeability at high wetting-phase saturations. We explain this by pointing to percolation threshold effects of the samples. For higher capillary numbers, we correctly observe increased relative permeability for the nonwetting phase caused by mobilization and flow of trapped fluid. It is concluded that the LB model is a powerful and promising tool for deriving physically meaningful constitutive relations directly from rock-microstructure images.


1996 ◽  
Vol 27 (4) ◽  
pp. 247-254 ◽  
Author(s):  
Zekâi Şen

A simple, approximate but practical graphical method is proposed for estimating the storage coefficient independently from the transmissivity value, provided that quasi-steady state flow data are available from a pumping test. In the past, quasi-steady state flow distance-drawdown data have been used for the determination of transmissivity only. The method is applicable to confined and leaky aquifers. The application of the method has been performed for various aquifer test data available in the groundwater literature. The results are within the practical limits of approximation compared with the unsteady state flow solutions.


Sign in / Sign up

Export Citation Format

Share Document