One-Dimensional z-Filtered Relay Experiments for Measurement of Homo- and Heteronuclear Coupling Constants

1994 ◽  
Vol 106 (1) ◽  
pp. 119-122 ◽  
Author(s):  
K.E. Kover ◽  
D. Jiao ◽  
D. Uhrin ◽  
P. Forgo ◽  
V.J. Hruby
1997 ◽  
Vol 62 (11) ◽  
pp. 1747-1753 ◽  
Author(s):  
Radek Marek

Determination of 15N chemical shifts and heteronuclear coupling constants of substituted 2,2-dimethylpenta-3,4-dienal hydrazones is presented. The chemical shifts were determined by gradient-enhanced inverse-detected NMR techniques and 1H-15N coupling constants were extracted from phase-sensitive gradient-enhanced single-quantum multiple bond correlation experiments. Stereospecific behaviour of the coupling constants 2J(1H,15N) and 1J(1H,13C) has been used to determine the configuration on a C=N double bond. The above-mentioned compounds exist predominantly as E isomers in deuteriochloroform.


1989 ◽  
Vol 85 (1) ◽  
pp. 111-131 ◽  
Author(s):  
Jeremy J Titman ◽  
David Neuhaus ◽  
James Keeler

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Lian he Li ◽  
Yue Zhao

Interaction of a screw dislocation with wedge-shaped cracks in one-dimensional hexagonal piezoelectric quasicrystals bimaterial is considered. The general solutions of the elastic and electric fields are derived by complex variable method. Then the analytical expressions for the phonon stresses, phason stresses, and electric displacements are given. The stresses and electric displacement intensity factors of the cracks are also calculated, as well as the force on dislocation. The effects of the coupling constants, the geometrical parameters of cracks, and the dislocation location on stresses intensity factors and image force are shown graphically. The distribution characteristics with regard to the phonon stresses, phason stresses, and electric displacements are discussed in detail. The solutions of several special cases are obtained as the results of the present conclusion.


RSC Advances ◽  
2019 ◽  
Vol 9 (62) ◽  
pp. 36082-36087 ◽  
Author(s):  
Aitor Moreno ◽  
Kine Østnes Hansen ◽  
Johan Isaksson

A new pulse program development, a chemical shift selective filtration clean in-phase HSQMBC (CSSF-CLIP-HSQMBC), is presented for the user-friendly measurement of long-range heteronuclear coupling constants in severely crowded spectral regions.


2019 ◽  
Vol 75 (11) ◽  
pp. 1475-1481 ◽  
Author(s):  
Wenlong Lan ◽  
Zhen Zhou ◽  
Jie Li ◽  
Yong Dou ◽  
Xiaoyun Hao ◽  
...  

A new cyanide-bridged FeIII–MnII heterobimetallic coordination polymer (CP), namely catena-poly[[[N,N′-(1,2-phenylene)bis(pyridine-2-carboxamidato)-κ4 N,N′,N′′,N′′′]iron(III)]-μ-cyanido-κ2 C:N-[bis(4,4′-bipyridine-κN)bis(methanol-κO)manganese(II)]-μ-cyanido-κ2 N:C], {[FeMn(C18H12N4O2)(CN)2(C10H8N2)2(CH3OH)2]ClO4} n , (1), was prepared by the self-assembly of the trans-dicyanidoiron(III)-containing building block [Fe(bpb)(CN)2]− [bpb2− = N,N′-(1,2-phenylene)bis(pyridine-2-carboxamidate)], [Mn(ClO4)2]·6H2O and 4,4′-bipyridine, and was structurally characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography and powder X-ray diffraction (PXRD). Single-crystal X-ray diffraction analysis shows that CP 1 possesses a cationic linear chain structure consisting of alternating cyanide-bridged Fe–Mn units, with free perchlorate as the charge-balancing anion, which can be further extended into a two-dimensional supramolecular sheet structure via inter-chain π–π interactions between the 4,4′-bipyridine ligands. Within the chain, each MnII ion is six-coordinated by an N6 unit and is involved in a slightly distorted octahedral coordination geometry. Investigation of the magnetic properties of 1 reveals an antiferromagnetic coupling between the cyanide-bridged FeIII and MnII ions. A best fit of the magnetic susceptibility based on the one-dimensional alternating chain model leads to the magnetic coupling constants J 1 = −1.35 and J 2 = −1.05 cm−1, and the antiferromagnetic coupling was further confirmed by spin Hamiltonian-based density functional theoretical (DFT) calculations.


Sign in / Sign up

Export Citation Format

Share Document