scholarly journals Comparative Spatial Localization of Protein-A-Tagged and Authentic Yeast Nuclear Pore Complex Proteins by Immunogold Electron Microscopy

2000 ◽  
Vol 129 (2-3) ◽  
pp. 295-305 ◽  
Author(s):  
Birthe Fahrenkrog ◽  
John P. Aris ◽  
Eduard C. Hurt ◽  
Nelly Panté ◽  
Ueli Aebi
1995 ◽  
Vol 6 (11) ◽  
pp. 1591-1603 ◽  
Author(s):  
T Guan ◽  
S Müller ◽  
G Klier ◽  
N Panté ◽  
J M Blevitt ◽  
...  

The p62 complex is an oligomeric assembly of O-linked glycoproteins of the nuclear pore complex that interacts with cytosolic transport factors and is part of the machinery for nuclear protein import. In this study we have purified the p62 complex from rat liver nuclear envelopes and analyzed its structure and composition. The p62 complex consists of four distinct polypeptides (p62, p58, p54, and p45) and has a mass of approximately 234 kDa, calculated from its hydrodynamic properties and supported by chemical cross-linking and scanning transmission electron microscopy. These data suggest that the p62 complex contains one copy of each constituent polypeptide. Analysis of preparations of the p62 complex by electron microscopy using rotary metal shadowing and negative staining revealed donut-shaped particles with a diameter of approximately 15 nm. Immunogold electron microscopy of isolated rat liver nuclear envelopes demonstrated that p62 occurs on both the nucleoplasmic and cytoplasmic sides of the pore complex near the central gated channel involved in active transport of proteins and RNAs. The properties and localization of the p62 complex suggest that it may be involved in binding transport ligands near the center of the nuclear pore complex and in subsequently transferring them to the gated transport channel.


1991 ◽  
Vol 98 (1) ◽  
pp. 107-122
Author(s):  
X. Wang ◽  
P. Traub

The karyo-cytoskeleton of cells cultured in vitro was investigated employing resinless section immunogold electron microscopy. Cells were entrapped in low-melting agarose, sequentially extracted with various buffers and digested with nucleases to obtain karyo-cytoskeletal frameworks and reacted with specific primary and gold-conjugated secondary antibodies or gold-conjugated protein A to decorate structural elements of these frameworks. Following embedment of the gold-labeled residual cell structures in diethylene glycol distearate and their sectioning, the embedding material was removed with organic solvent and the sections were finally subjected to CO2 critical point drying. When this technique was applied to mouse skin fibroblasts (MSF), it revealed a dense and salt-stable intranuclear network of fibrogranular material. Antibodies directed against vimentin and lamin B detected a cytoplasmic meshwork of intermediate filaments (IFs) and a nuclear lamina, respectively; the latter, however, only after removal of chromatin from nuclei by nuclease digestion of DNA. Intranuclear filaments free of adhering globular material were morphologically very similar to cytoplasmic vimentin filaments. By contrast, mouse plasmacytoma MPC-11 cells lacking detectable amounts of cytoplasmic IF proteins and lamins A and C were devoid of a salt-stable internal nuclear matrix. The same holds true for MPC-11 cells that had been treated with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate to induce vimentin synthesis and establish a cytoplasmically extended IF network. These findings were in accordance with the biochemical behavior of Triton X-100-treated MSF and MPC-11 cells and their appearance in immunofluorescence microscopy upon extraction with high ionic strength buffer. While the chromatin was quantitatively retained in the residual cell structures derived from MSF cells, in those obtained from MPC-11 cells the nuclear lamina was disrupted and the chromatin was released from the nuclei, suggesting that MPC-11 cells lack the salt-stable nuclear scaffold to which chromatin is normally anchored.


1998 ◽  
Vol 143 (7) ◽  
pp. 1813-1830 ◽  
Author(s):  
Marcello Marelli ◽  
John D. Aitchison ◽  
Richard W. Wozniak

We have identified a specific karyopherin docking complex within the yeast nuclear pore complex (NPC) that contains two novel, structurally related nucleoporins, Nup53p and Nup59p, and the NPC core protein Nup170p. This complex was affinity purified from cells expressing a functional Nup53p–protein A chimera. The localization of Nup53p, Nup59p, and Nup170p within the NPC by immunoelectron microscopy suggests that the Nup53p-containing complex is positioned on both the cytoplasmic and nucleoplasmic faces of the NPC core. In association with the isolated complex, we have also identified the nuclear transport factor Kap121p (Pse1p). Using in vitro binding assays, we showed that each of the nucleoporins interacts with one another. However, the association of Kap121p with the complex is mediated by its interaction with Nup53p. Moreover, Kap121p is the only β-type karyopherin that binds Nup53p suggesting that Nup53p acts as a specific Kap121p docking site. Kap121p can be released from Nup53p by the GTP bound form of the small GTPase Ran. The physiological relevance of the interaction between Nup53p and Kap121p was further underscored by the observation that NUP53 mutations alter the subcellular distribution of Kap121p and the Kap121p- mediated import of a ribosomal L25 reporter protein. Interestingly, Nup53p is specifically phosphorylated during mitosis. This phenomenon is correlated with a transient decrease in perinuclear-associated Kap121p.


1993 ◽  
Vol 123 (4) ◽  
pp. 771-783 ◽  
Author(s):  
M P Rout ◽  
G Blobel

Nuclear pore complexes (NPCs) have been isolated from the yeast Saccharomyces. Negative stain electron microscopy of the isolated NPCs and subsequent image reconstruction revealed the octagonal symmetry and many of the ultrastructural features characteristic of vertebrate NPCs. The overall dimensions of the yeast NPC, both in its isolated form as well as in situ, are smaller than its vertebrate counterpart. However, the diameter of the central structures are similar. The isolated yeast NPC has a sedimentation coefficient of approximately 310 S and an M(r) of approximately 66 MD. It retains all but one of the eight known NPC proteins. In addition it contains as many as 80 uncharacterized proteins that are candidate NPC proteins.


1992 ◽  
Vol 40 (1) ◽  
pp. 73-82 ◽  
Author(s):  
Y Fukui ◽  
A Yamamoto ◽  
R Masaki ◽  
K Miyauchi ◽  
Y Tashiro

We examined whether induction of the phenobarbital (PB)-inducible form of cytochrome P450 (P450IIB) in rat hepatocytes could be analyzed quantitatively by immunogold electron microscopy. Rats received intraperitoneal injections of PB every 24 hr and livers at the various stages of PB induction were fixed by perfusion with a mixture of paraformaldehyde (4%) and glutaraldehyde (0.1%) and embedded in LR White. Ultra-thin sections were cut and labeled by the protein A-gold procedure using affinity-purified anti-P450IIB antibody which was previously immunoabsorbed with liver microsomes from a control rat (not treated with PB). We counted the number of gold particles per micron of the rough ER membranes (particle density). Before PB treatment, the particle density of the rough ER in rat hepatocytes was practically zero and increased markedly at 48 and 72 hr after PB treatment. The rough microsomes were prepared from these PB-treated rat livers. The amount of P450IIB was estimated by immunoblot analysis and the number of gold particles bound to the rough microsomal membrane was determined by the same post-embedding immunogold procedure. The particle density of the rough microsomes increased in parallel with the increase in the amount of P450IIB, indicating good correlation of the two variables. Thus, the induction of cytochrome P450IIB can be quantitatively and reliably investigated by immunogold electron microscopy.


1995 ◽  
Vol 108 (9) ◽  
pp. 2963-2972 ◽  
Author(s):  
M. Grote ◽  
U. Kubitscheck ◽  
R. Reichelt ◽  
R. Peters

Ultrathin sections of Lowicryl K4M embedded cultured 3T3 cells, human keratinocytes and mouse/rat liver tissue were incubated with polyspecific primary antibodies against p62 and other nucleoporins followed by 10 nm gold labeled secondary antibodies. By quantitatively evaluating both cross sections and tangential sections of the NPC, we found that irrespective of the cell type antibodies predominantly bound within a radius of 25 nm around the central axis of the nuclear pore complex (NPC). Superposition of a current structural model of the NPC with the nucleoporin distribution observed by us showed that nucleoporins mapped predominatly to the controversely discussed ‘central granule’. Our experimental approach was verified by mapping gp210, another nuclear pore protein, at or very close to the NPC in the perinuclear cisterna thus establishing a distribution pattern completely different from that of the nucleoporins.


2014 ◽  
Vol 127 (20) ◽  
pp. 4351-4355 ◽  
Author(s):  
Anna Löschberger ◽  
Christian Franke ◽  
Georg Krohne ◽  
Sebastian van de Linde ◽  
Markus Sauer

1989 ◽  
Vol 108 (6) ◽  
pp. 2059-2067 ◽  
Author(s):  
J P Aris ◽  
G Blobel

We have used a monoclonal antibody raised against rat liver nuclear proteins to study two cross-reactive proteins in the yeast nucleus. In rat liver, this monoclonal antibody, mAb 414, binds to nuclear pore complex proteins, including one of molecular weight 62,000 (Davis, L. I., and G. Blobel. 1987. Proc. Natl. Acad. Sci. USA. 84:7552-7556). In yeast, mAb 414 cross reacts by immunoblotting with two proteins that have apparent molecular weights of 110,000 and 95,000, and are termed p110 and p95, respectively. Examination of subcellular fractions by immunoblotting shows that both p110 and p95 are located exclusively in the nuclear fraction. The mAb 414 immunoprecipitates several proteins from a crude yeast cell extract, including p110, p95, and a approximately 55-kD protein. Immunoprecipitation from subcellular fractions yields only p110 and p95 from purified nuclei, whereas the approximately 55-kD protein is immunoprecipitated from the soluble fraction. Digestion of purified nuclei with DNase to produce nuclear envelopes releases some of p110, but the majority of p110 is solubilized only after treatment of envelopes with 1 M NaCl. Immunofluorescence localization using yeast cells and isolated nuclei shows a punctate and patchy staining pattern of the nucleus. Confocal laser scanning immunofluorescence microscopy resolves the punctate and patchy staining pattern better and shows regions of fluorescence at the nuclear envelope. Postembedding immunogold electron microscopy using purified nuclei and mAb 414 shows colloidal gold decoration of the yeast nuclear envelope, but resolves pore complexes too poorly to achieve further ultrastructural localization. Immunogold labeling of nuclei followed by embedding suggests decoration of pore complexes. Thus, p110 and/or p95 are localized to the nuclear envelope in yeast, and may be components of the nuclear pore complex.


2006 ◽  
Vol 173 (3) ◽  
pp. 361-371 ◽  
Author(s):  
Alexis S. Madrid ◽  
Joel Mancuso ◽  
W. Zacheus Cande ◽  
Karsten Weis

The nuclear pore complex (NPC) is a large channel that spans the two lipid bilayers of the nuclear envelope and mediates transport events between the cytoplasm and the nucleus. Only a few NPC components are transmembrane proteins, and the role of these proteins in NPC function and assembly remains poorly understood. We investigate the function of the three integral membrane nucleoporins, which are Ndc1p, Pom152p, and Pom34p, in NPC assembly and transport in Saccharomyces cerevisiae. We find that Ndc1p is important for the correct localization of nuclear transport cargoes and of components of the NPC. However, the role of Ndc1p in NPC assembly is partially redundant with Pom152p, as cells lacking both of these proteins show enhanced NPC disruption. Electron microscopy studies reveal that the absence of Ndc1p and Pom152p results in aberrant pores that have enlarged diameters and lack proteinaceous material, leading to an increased diffusion between the cytoplasm and the nucleus.


Sign in / Sign up

Export Citation Format

Share Document