Vibration Transmission through Rolling Element Bearings, Part V: Effect of Distributed Contact Load on Roller Bearing Stiffness Matrix

1994 ◽  
Vol 169 (4) ◽  
pp. 547-553 ◽  
Author(s):  
T.C. Lim ◽  
R. Singh
1979 ◽  
Vol 101 (3) ◽  
pp. 293-302 ◽  
Author(s):  
P. K. Gupta

An analytical formulation for the roller motion in a cylindrical roller bearing is presented in terms of the classical differential equations of motion. Roller-race interaction is analyzed in detail and the resulting normal force and moment vectors are determined. Elastohydrodynamic traction models are considered in determining the roller-race tractive forces and moments. Formulation for the roller end and race flange interaction during skewing of the roller is also considered. Roller-cage interactions are assumed to be either hydrodynamic or fully metallic. Simple relationships are used to determine the churning and drag losses.


1979 ◽  
Vol 101 (3) ◽  
pp. 305-311 ◽  
Author(s):  
P. K. Gupta

Cylindrical roller bearing performance simulations are expressed in terms of the general motion of the bearing elements as derived by integrating the differential equations of motion. Roller skew as induced by relative race misalignment is simulated. It is shown that skidding can be reduced by using a lubricant providing relatively high traction. However, such a fluid results in increased bearing torque and power loss. The influence of geometrical parameters, such as roller/cage, or race/cage clearance and radial preload, on the roller and cage motion is also investigated.


2004 ◽  
Vol 10 (6) ◽  
pp. 489-494 ◽  
Author(s):  
David P. Fleming ◽  
J. V. Poplawski

Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic transient analysis requires bearing forces to be determined at each step of the transient solution. Analyses have been carried out to show the effect of accurate bearing transient forces (accounting for nonlinear speed and load-dependent bearing stiffness) as compared to conventional use of average rolling-element bearing stiffness. Bearing forces were calculated by COBRA-AHS (Computer Optimized Ball and Roller Bearing Analysis—Advanced High Speed) and supplied to the rotordynamics code ARDS (Analysis of Rotor Dynamic Systems) for accurate simulation of rotor transient behavior. COBRA-AHS is a fast-running five degree-of-freedom computer code able to calculate high speed rolling-element bearing load-displacement data for radial and angular contact ball bearings and also for cylindrical and tapered roller bearings. Results show that use of nonlinear bearing characteristics is essential for accurate prediction of rotordynamic behavior.


Sign in / Sign up

Export Citation Format

Share Document