The Free Vibrations of Tapered Rectangular Plates Using a New Set of Beam Functions with the Rayleigh–Ritz Method

1999 ◽  
Vol 223 (5) ◽  
pp. 703-722 ◽  
Author(s):  
K.Y Cheung ◽  
D Zhou
Author(s):  
Oleksandr Grigorenko ◽  
◽  
Maksym Borysenko ◽  
Olena Boychuk ◽  
Volodymyr Novytskyi ◽  
...  

2005 ◽  
Vol 72 (5) ◽  
pp. 797-800 ◽  
Author(s):  
Jae-Hoon Kang ◽  
Arthur W. Leissa

A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, complete (not truncated) conical shells of revolution in which the bottom edges are normal to the midsurface of the shells based upon the circular cylindrical coordinate system using the Ritz method. Comparisons are made between the frequencies and the corresponding mode shapes of the conical shells from the authors' former analysis with bottom edges parallel to the axial direction and the present analysis with the edges normal to shell midsurfaces.


1950 ◽  
Vol 17 (4) ◽  
pp. 448-453 ◽  
Author(s):  
Dana Young

Abstract Ritz’s method is one of several possible procedures for obtaining approximate solutions for the frequencies and modes of vibration of thin elastic plates. The accuracy of the results and the practicability of the computations depend to a great extent upon the set of functions that is chosen to represent the plate deflection. In this investigation, use is made of the functions which define the normal modes of vibration of a uniform beam. Tables of values of these functions have been computed as well as values of different integrals of the functions and their derivatives. With the aid of these data, the necessary equations can be set up and solved with reasonable effort. Solutions are obtained for three specific plate problems, namely, (a) square plate clamped at all four edges, (b) square plate clamped along two adjacent edges and free along the other two edges, and (c) square plate clamped along one edge and free along the other three edges.


Author(s):  
Yu Fu ◽  
Jianjun Yao ◽  
Zhenshuai Wan ◽  
Gang Zhao

In this investigation, the free vibration analysis of laminated composite rectangular plates with general boundary conditions is performed with a modified Fourier series method. Vibration characteristics of the plates have been obtained via an energy function represented in the general coordinates, in which the displacement and rotation in each direction is described as an improved form of double Fourier cosine series and several closed-form auxiliary functions to eliminate any possible jumps and boundary discontinuities. All the expansion coefficients are then treated as the generalized coordinates and determined by Rayleigh-Ritz method. The convergence and reliability of the current method are verified by comparing with the results in the literature and those of Finite Element Analysis. The effects of boundary conditions and geometric parameters on the frequencies are discussed as well. Finally, numerous new results for laminated composite rectangular plates with different geometric parameters are presented for various boundary conditions, which may serve as benchmark solutions for future research.


Author(s):  
S. Bashmal ◽  
R. Bhat ◽  
S. Rakheja

In-plane free vibrations of an isotropic, elastic annular disk constrained at some points on the inner and outer boundaries are investigated. The presented study is relevant to various practical problems including disks clamped by bolts along the inner and outer edges or the railway wheel vibrations. The boundary characteristic orthogonal polynomials are employed in the Rayleigh-Ritz method to obtain the frequency parameters and the associated mode shapes. The boundary characteristic orthogonal polynomials are generated for the free boundary conditions of the disk while artificial springs are used to realize clamped conditions at discrete points. The frequency parameters for different point constraint conditions are evaluated and compared with those computed from a finite element model to demonstrate the validity of the proposed method. The computed mode shapes are presented for a disk with different point constraints at the inner and outer boundaries to demonstrate the free in-plane vibration behavior of the disk. Results show that addition of point supports causes some of the modes to split into two different frequencies with different mode shapes. The effects of different orientations of multiple point supports on the frequency parameters and mode shapes are also discussed.


1996 ◽  
Vol 63 (1) ◽  
pp. 110-115 ◽  
Author(s):  
Moon K. Kwak

This paper is concerned with the virtual mass effect on the natural frequencies and mode shapes of rectangular plates due to the presence of the water on one side of the plate. The approximate formula, which mainly depends on the so-called nondimensionalized added virtual mass incremental factor, can be used to estimate natural frequencies in water from natural frequencies in vacuo. However, the approximate formula is valid only when the wet mode shapes are almost the same as the one in vacuo. Moreover, the nondimensionalized added virtual mass incremental factor is in general a function of geometry, material properties of the plate and mostly boundary conditions of the plate and water domain. In this paper, the added virtual mass incremental factors for rectangular plates are obtained using the Rayleigh-Ritz method combined with the Green function method. Two cases of interfacing boundary conditions, which are free-surface and rigid-wall conditions, and two cases of plate boundary conditions, simply supported and clamped cases, are considered in this paper. It is found that the theoretical results match the experimental results. To investigate the validity of the approximate formula, the exact natural frequencies and mode shapes in water are calculated by means of the virtual added mass matrix. It is found that the approximate formula predicts lower natural frequencies in water with a very good accuracy.


Author(s):  
Yoshihiro Narita

Abstract The free vibration behavior of rectangular plates provides important technical information in structural design, and the natural frequencies are primarily affected by the boundary conditions as well as aspect and thickness ratios. One of the three classical edge conditions, i.e., free, simple supported and clamped edges, may be used to model the constraint along an edge of the rectangle. Along the entire boundary with four edges, there exist a wide variety of combinations in the edge conditions, each yielding different natural frequencies and mode shapes. For counting the total number of possible combinations, the present paper introduces the Polya counting theory in combinatorial mathematics, and formulas are derived for counting the exact numbers. A modified Ritz method is then developed to calculate natural frequencies of anisotropic rectangular plates under any combination of the three edge conditions and is used to numerically verify the numbers. In numerical experiments, the number of combinations in the free vibration behaviors is determined for some plate models by using the derived formulas, and are corroborated by counting the numbers of different sets of the natural frequencies that are obtained from the Ritz method.


Sign in / Sign up

Export Citation Format

Share Document