β-Neuregulin and Autocrine Mediated Survival of Schwann Cells Requires Activity of Ets Family Transcription Factors

2002 ◽  
Vol 20 (1) ◽  
pp. 154-167 ◽  
Author(s):  
David B. Parkinson ◽  
Katrin Langner ◽  
Soheila Sharghi Namini ◽  
Kristjan R. Jessen ◽  
Rhona Mirsky
2014 ◽  
Vol 289 (31) ◽  
pp. 21605-21616 ◽  
Author(s):  
Shuo Wang ◽  
Miles H. Linde ◽  
Manoj Munde ◽  
Victor D. Carvalho ◽  
W. David Wilson ◽  
...  

Author(s):  
Kay Macleod ◽  
Bernard Vandenbunder ◽  
Dominique Stehelin

2017 ◽  
Vol 121 (13) ◽  
pp. 2748-2758 ◽  
Author(s):  
Suela Xhani ◽  
Shingo Esaki ◽  
Kenneth Huang ◽  
Noa Erlitzki ◽  
Gregory M. K. Poon

2002 ◽  
pp. 189-196
Author(s):  
Dennis K. Watson ◽  
Runzhao Li ◽  
Victor I. Sementchenko ◽  
George Mavrothalassitis ◽  
Arun Seth

2014 ◽  
Vol 106 (2) ◽  
pp. 497a
Author(s):  
Miles H. Linde ◽  
Ana Tolic ◽  
Manoj M. Munde ◽  
W. David Wilson ◽  
Gregory M.K. Poon

2017 ◽  
Vol 17 (6) ◽  
pp. 337-351 ◽  
Author(s):  
Gina M. Sizemore ◽  
Jason R. Pitarresi ◽  
Subhasree Balakrishnan ◽  
Michael C. Ostrowski

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 346-346
Author(s):  
Elaine Y. Chung ◽  
Diana Cozma ◽  
Duonan Yu ◽  
Michael Dews ◽  
Erik A. Wentzel ◽  
...  

Abstract We have recently demonstrated that Pax5 promotes B-lymphomagenesis by upregulating key components of B-cell receptor signaling [Cozma et al, J Clin Inv, 117 (8), 2007]. Gene regulation by Pax5 often involves complex formation with other oncogenic transcription factors of the Ets family, namely Myb and Ets1. We determined that expression of these proteins themselves depends on the presence of Pax5, as seen in human diffuse large B-cell lymphomas with Pax5 knockdown and murine lymphomas with epigenetic silencing of Pax5 [Yu et al, Blood, 101:1950–1955, 2003; Johnson et al, Nat Immunol, 5:853–861, 2004]. Upon reconstitution with the Pax5 gene, Myb and Ets1 levels increase sharply. This occurs with little increase in steady-state mRNA levels, suggesting post-transcriptional regulation, possibly by microRNAs. To test this hypothesis, we compared miRNA profiles of Pax5-deficieint and sufficient cells and discovered that several miRNAs are indeed repressed by Pax5. Among them is the miR-15a/16-1 cluster whose predicted targets include both Myb and Ets1. Consistent with this prediction, forced expression of miR-15a/16 brings down Myb and Ets1 protein levels. This is accompanied by impaired Pax5 function and overall suppression of B-lymphomagenesis. Thus, Ets family members (along with previously identified bcl-2) are key targets of the miR-15a/16 locus, a tumor suppressor in chronic lymphocytic leukemia. Interplay between Pax5, Myb/Ets1, and miR-15a/16-1. (A) Upregulation of Myb and Ets 1 in tumors over-expressing Pax5ER fusion, as compared to control GFP-only neoplasms. (B) Down-regulation of Myb and Ets1 in Pax5 tumors engineered to over-express the miR-15a/16-1 cluster. All panels depict Western blotting. Interplay between Pax5, Myb/Ets1, and miR-15a/16-1. (A) Upregulation of Myb and Ets 1 in tumors over-expressing Pax5ER fusion, as compared to control GFP-only neoplasms. (B) Down-regulation of Myb and Ets1 in Pax5 tumors engineered to over-express the miR-15a/16-1 cluster. All panels depict Western blotting.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 661-661
Author(s):  
Vit Pospisil ◽  
Juraj Kokavec ◽  
Pavel Burda ◽  
Nikola Curik ◽  
Arthur I. Skoultchi ◽  
...  

Abstract PU.1 (Sfpi1) is an ets family transcription factor required for the proper generation of both myeloid (macrophages and neutrophils) and lymphoid lineages (B and T lymphocytes)(Scott 1994, McKercher 1996). Graded expression of exogenous PU.1 in murine PU.1-deficient fetal liver hematopoietic progenitors demonstrated that increased levels of PU.1 are required to initiate development of macrophages (DeKoter, 2000). We have studied the effects of graded expression of PU.1 on its occupancy in chromatin and on the development of myeloid cells in vitro. We measured changes in gene expression, PU.1 occupancy and histone modifications in PU.1-null hematopoietic progenitor cells stably expressing PU.1 fused to the ligand-binding domain of the estrogen receptor (PU.1-ER) (Walsh 2002). The level of active PU.1-ER was regulated with graded levels of the ER inducer tamoxifen. In vitro, intermediate levels of tamoxifen produced cells with granulocyte characteristics in the suspension cell fraction and macrophage-like characteristics in the attached fraction, whereas high levels of PU.1 produced mostly attached macrophage-like cells. Expression of granulocyte-specific PU.1 target mRNAs including gelatinase B (Mmp9) and myeloperoxidase (Mpo) were observed to be expressed only with intermediate levels of tamoxifen. In contrast, expression of macrophage PU.1 target mRNAs including Cd14, F4/80 and Cd68 mRNAs were observed to be gradually upregulated upon PU.1-ER activation, with the maximum expression at the highest levels of tamoxifen. Thus, the expression levels of PU.1 target genes and phenotypic characteristics of the cells are dependent on PU.1 levels. Interestingly, macrophage-like cells can be produced from granulocytic-like cells by changing tamoxifen levels and vice versa. Chromatin immunoprecipitation analysis revealed specific PU.1 occupancy within regulatory regions of the genes predominantly expressed in macrophages including Cd14 and Cd11b after treatment with high levels of tamoxifen. Specific PU.1 occupancy within regulatory regions of the granulocyte specific genes including MMP9 was observed at intermediate levels of tamoxifen. Suprisingly, chromatin immunoprecipitation analysis revealed specific PU.1 occupancy within regulatory regions of the lymphocytic PU.1 target genes including Interleukin-7 receptor (Il-7r) and RAG1 at intermediate levels of tamoxifen even though expression of these genes was not detected. Accumulation of acetylated K9 and methylated K4 of histone H3 in gene loci of macrophage and granulocytic markers such as Cd14, Cd11b, and Mmp9 correlated with their mRNA expression. However, lymphocyte-specific regulatory regions including that of Il-7r gene were hypoacetylated in H3K9 despite a marked PU.1 recruitment suggesting additional factors may be required for PU.1 mediated transactivation. To identify these molecules we have tested PU.1-dependent transcription factors: Egr2, Nab2, Cebpa and Gfi-1 and found that upon increasing PU.1 levels, expression of Egr2/Nab2 and Gfi-1/Cebpa changed in a reciprocal manner and these changes preceded expression of the lineage specific markers. We are currently testing if PU.1 directly regulates expression of Egr2, Nab2, Cebpa and Gfi-1 during granulocytic/macrophage differentiation.


Blood ◽  
1998 ◽  
Vol 91 (12) ◽  
pp. 4554-4560 ◽  
Author(s):  
A. Petrella ◽  
I. Doti ◽  
V. Agosti ◽  
P. Carandente Giarrusso ◽  
D. Vitale ◽  
...  

The recently-identified Wiskott-Aldrich syndrome protein gene (WASP) is responsible for the Wiskott-Aldrich X-linked immunodeficiency as well as for isolated X-linked thrombocytopenia (XLT). To characterize the regulatory sequences of the WASP gene, we have isolated, sequenced and functionally analyzed a 1.6-Kb DNA fragment upstream of the WASP coding sequence. Transfection experiments showed that this fragment is capable of directing efficient expression of the reporter chloramphenicol acetyltransferase (CAT) gene in all human hematopoietic cell lines tested. Progressive 5′ deletions showed that the minimal sequence required for hematopoietic-specific expression consists of 137 bp upstream of the transcription start site. This contains potential binding sites for several hematopoietic transcription factors and, in particular, two Ets-1 consensus that proved able to specifically bind to proteins present in nuclear extracts of Jurkat cells. Overexpression of Ets-1 in HeLa resulted in transactivation of the CAT reporter gene under the control of WASP regulatory sequences. Disruption of the Ets-binding sequences by side-directed mutagenesis abolished CAT expression in Jurkat cells, indicating that transcription factors of the Ets family play a key role in the control of WASP transcription.


Sign in / Sign up

Export Citation Format

Share Document