Regulation of Airway Surface Liquid on the Isolated Guinea-pig Trachea

1994 ◽  
Vol 7 (4) ◽  
pp. 265-269 ◽  
Author(s):  
H. Rahmoune ◽  
K.L. Shephard
1994 ◽  
Vol 77 (5) ◽  
pp. 2333-2340 ◽  
Author(s):  
D. Yager ◽  
T. Cloutier ◽  
H. Feldman ◽  
J. Bastacky ◽  
J. M. Drazen ◽  
...  

The average thickness and distribution of airway surface liquid (ASL) on the luminal surface of peripheral airways were measured in normal guinea pig lungs frozen at functional residual capacity (FRC) and total lung capacity (TLC). Tissue blocks containing cross sections of airways of internal perimeter 0.188–3.342 mm were cut from frozen lungs and imaged by low-temperature scanning electron microscopy (LTSEM). Measurements made from LTSEM images were found to be independent of freezing rate by comparison of measurements at rapid and slow freezing rates. At both lung volumes, the ASL was not uniformly distributed in either the circumferential or longitudinal direction; there were regions of ASL where its thickness was < 0.1 micron, whereas in other regions ASL collected in pools. Discernible liquid on the surfaces of airways frozen at FRC followed the contours of epithelial cells and collected in pockets formed by neighboring cells, a geometry consistent with a low value of surface tension at the air-liquid interface. At TLC airway liquid collected to cover epithelial cells and to form a liquid meniscus, a geometry consistent with a higher value of surface tension. The average ASL thickness (h) was approximately proportional to the square root of airway internal perimeter, regardless of lung volume. For airways of internal perimeter 250 and 1,800 microns, h was 0.9 and 1.8 microns at FRC and 1.7 and 3.7 microns at TLC, respectively. For a given airway internal perimeter, h was 1.99 times thicker at TLC than at FRC; the difference was statistically significant (P < 0.01; 95% confidence interval 1.29–3.08).(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 76 (3) ◽  
pp. 1156-1165 ◽  
Author(s):  
K. L. Shephard ◽  
H. Rahmoune

An isolated preparation of the guinea pig trachea was developed. The trachea was exposed serosally to Krebs-Henseleit solution and mucosally to tidal airflow, designed to mimic conditions in vivo. The preparation establishes stable layers of airway surface liquid (ASL). Typical depth, transepithelial potential differences, and sodium activity are 200 microns, -3 mV, and 125 mM, respectively (approximate sodium concn 170 mM). When exposed to air with a vapor pressure deficit (VPD), evaporation of water occurs from ASL, ASL depth decreases, and the concentration of sodium ions in ASL increases. The water content of air passing over the trachea also increases. This measurement is compared with measurements of the change in volume of ASL, based on depth changes, to yield estimates of net water transport (NWT). Measurements of changes in the sodium content of ASL allow for the calculation of net sodium transport by the trachea. Evaporation rate, changes in the volume of ASL, NWT, and net sodium transport are all influenced by VPD. The results suggest that evaporation from ASL increases its sodium concentration (and osmotic pressure) and increases osmotically driven NWT to replace water lost. Evaporation-induced increases in the sodium concentration appear to be limited by enhanced sodium uptake at high VPD.


1995 ◽  
Vol 78 (6) ◽  
pp. 2020-2024 ◽  
Author(s):  
H. Rahmoune ◽  
K. L. Shephard

Two preparations of the guinea pig trachea have been examined: an isolated preparation and a preparation in vivo, both exposed to air on the mucosal surface. Ion-selective microelectrodes have been used to measure Na (alpha Na) and K activities (alpha K) in airway surface liquid (ASL) while airflows tending either to evaporate or to condense water were applied. Other variables measured included ASL depth and transepithelial potential difference (TEPD). In isolated preparations, condensation did not progressively alter depth, alpha Na, or TEPD but caused a slight increase in alpha K. Evaporation decreased depth; increased alpha Na, alpha K, and osmotic pressure; and changed TEPD. Measurements on preparations in vivo broadly supported these observations. In addition, the depth of ASL developed on isolated preparations was related to the humidity of the air to which animals had been previously exposed. We conclude that condensation and evaporation at the ASL-air interface in isolated preparations and in preparations in vivo do significantly modify key ASL variables as does the relative humidity of the air to which animals are exposed before experimentation.


Pneumologie ◽  
2015 ◽  
Vol 69 (07) ◽  
Author(s):  
A Seyhan Agircan ◽  
M Lampe ◽  
J Duerr ◽  
R Pepperkok ◽  
MA Mall

Author(s):  
Thiago Inácio Teixeira do Carmo ◽  
Victor Emanuel Miranda Soares ◽  
Jonatha Wruck ◽  
Fernanda dos Anjos ◽  
Débora Tavares de Resende e Silva ◽  
...  

1985 ◽  
Vol 69 (s12) ◽  
pp. 33P-33P
Author(s):  
P.S. Woolman ◽  
T.W. Higenbottam ◽  
D. Shaw

2018 ◽  
Vol 141 (2) ◽  
pp. AB123
Author(s):  
Jin Young Min ◽  
Julia He Huang ◽  
James E. Norton ◽  
Lydia A. Suh ◽  
Caroline P.E. Price ◽  
...  

2018 ◽  
Vol 52 (4) ◽  
pp. 1800668 ◽  
Author(s):  
Megan J. Webster ◽  
Boris Reidel ◽  
Chong D. Tan ◽  
Arunava Ghosh ◽  
Neil E. Alexis ◽  
...  

The multi-organ disease cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane regulator gene (CFTR) that lead to diminished transepithelial anion transport. CF lungs are characterised by airway surface liquid (ASL) dehydration, chronic infection/inflammation and neutrophilia. Dysfunctional CFTR may upregulate the epithelial Na+ channel (ENaC), further exacerbating dehydration. We previously demonstrated that short palate lung and nasal epithelial clone 1 (SPLUNC1) negatively regulates ENaC in normal airway epithelia.Here, we used pulmonary tissue samples, sputum and human bronchial epithelial cells (HBECs) to determine whether SPLUNC1 could regulate ENaC in a CF-like environment.We found reduced endogenous SPLUNC1 in CF secretions, and rapid degradation of recombinant SPLUNC1 (rSPLUNC1) by CF secretions. Normal sputum, containing SPLUNC1 and SPLUNC1-derived peptides, inhibited ENaC in both normal and CF HBECs. Conversely, CF sputum activated ENaC, and rSPLUNC1 could not reverse this phenomenon. Additionally, we observed upregulation of ENaC protein levels in human CF bronchi. Unlike SPLUNC1, the novel SPLUNC1-derived peptide SPX-101 resisted protease degradation, bound apically to HBECs, inhibited ENaC and prevented ASL dehydration following extended pre-incubation with CF sputum.Our data indicate that CF mucosal secretions drive ASL hyperabsorption and that protease-resistant peptides, e.g. SPX-101, can reverse this effect to rehydrate CF ASL.


Sign in / Sign up

Export Citation Format

Share Document