Pollen Response-Surface Estimates of Late-Quaternary Changes in the Moisture Balance of the Northeastern United States

1993 ◽  
Vol 40 (2) ◽  
pp. 213-227 ◽  
Author(s):  
Robert S. Webb ◽  
Katherine H. Anderson ◽  
Thompson Webb

AbstractQuantitative estimates of late-Quaternary climate in the northeastern United States are reconstructed from fossil pollen data to evaluate changes in the regional moisture balance inferred from water-level fluctuations. We use environmental response surfaces to calibrate modern pollen data (for 17 different taxa) to an index of effective soil moisture and mean annual precipitation. We apply these response surfaces to fossil pollen data from 60 sites in the region to reconstruct changes in soil moisture and mean annual precipitation at 3000-yr intervals from 12,000 yr B.P. to present. The mapped reconstructions of soil moisture and mean annual precipitation illustrate how the regional moisture balance of the Northeast may have changed over the last 12,000 yr in response to changing climate. Reconstructions of annual precipitation show a gradual increase from 30% below modern values at 12,000 yr B.P. to near-modern values by 6000 yr B.P. and then remain relatively constant thereafter. Reconstructed changes in the index of effective soil moisture, however, show a pattern of near-modern values at 12,000, 6000, and 3000 yr B.P., with significantly lower values estimated for 9000 yr B.P., the time of maximum pine pollen abundances in the Northeast. This pattern of change is similar to the change in regional moisture balance inferred from stratigraphic records of water-level fluctuations. These results confirm previous interpretations, based on records of water-level fluctuations, that conditions in the Northeast were significantly drier during the early to middle Holocene than at other times during the last 12,000 yr.

2012 ◽  
Vol 8 (3) ◽  
pp. 2321-2367
Author(s):  
P. G. C. Amaral ◽  
A. Vincens ◽  
J. Guiot ◽  
G. Buchet ◽  
P. Deschamps ◽  
...  

Abstract. Located at the transition between the Saharian and Sahelian zones, at the center of one of the largest endoreic basins, the Lake Chad is ideally located to record regional environmental changes that occurred in the past. However, until now, no continuous archive from Lake Chad covering the Holocene has been studied. In this paper, we present pollen data from the first Holocene sedimentary sequence collected in Lake Chad (13° N; 14° E; Sahel region). Dated between ca. 6700 and ca. 5000 cal yr BP, this record encompasses the termination of the African Humid Period (AHP). Vegetational reconstructions are based on standard analyses of the pollen diagrams and are strengthened by quantitative approaches. Potential biomes that occurred at that time around Mega-Lake Chad are reconstructed using the biomization method and mean annual precipitation is estimated using the modern analogues technique. Results show that between ca. 6700 and ca. 6050 cal yr BP, a vegetation close to humid woodland or humid savanna, including elements currently found much further southward, thrived in the vicinity and/or the extra-local environment of the Mega-Lake Chad in place of the modern steppe, dry woodland and desert vegetation observed today. At the same time, montane forest populations extended further southward on the Adamawa plateau. This vegetation distribution is supported by biome reconstructions as well as by mean annual precipitation estimates of ca. 800 (−400/+700) mm for the period. The high abundance of lowland humid pollen taxa is interpreted as the result of a northward migration of the corresponding plants during the AHP driven by more favorable climatic conditions. Our interpretation in favor of a regional vegetation response to climatic changes is supported by other pollen data from several Northwestern African records. However, we cannot rule out that an increase of Chari-Logone inputs into the Mega-Lake Chad due to variations in hydrological regime might have contributed to the higher abundance of lowland humid pollen taxa observed in the mid-Holocene sedimentary sequence. Changes in the structure and floristic composition of the vegetation towards more open and drier formations occurred after ca. 6050 cal yr BP. This is also evidenced by a decrease in mean annual precipitation estimates to approximately 600 (−230/+600) mm. This change corresponds to the onset of the AHP termination. The constant presence of lowland humid taxa until ca. 5000 cal yr BP, even if displaying a slight decrease, contemporaneous with an increase in steppic taxa, demonstrates that at ca. 5000 cal yr BP the modern vegetation was not yet established in the vicinity of Lake Chad. Our data indicate that vegetational change during this period must have occurred progressively, at least over 1000 yr, and are inconsistent with an abrupt aridification and a collapse of the vegetation cover in the East-Central Saharan and Sahelian regions at the AHP termination.


Author(s):  
Obed M. Ogega ◽  
Enrico Scoccimarro ◽  
Hussen S. Endris ◽  
Maurice Nyadawa ◽  
James Mbugua ◽  
...  

In late/early 2019/2020, unprecedented high-water-levels were observed in Lake Victoria causing massive flooding in the low-lying lake-adjacent areas and disrupting human and natural systems in the Lake Victoria Basin (LVB). The high lake water-level coincided with unusually heavy and prolonged 2019 June to December precipitation in the LVB. The current study estimates future precipitation patterns over the LVB using HighResMIP and ScenarioMIP general circulation model (GCM) simulations from the 6th phase of the Coupled Model Intercomparison Project (CMIP6). Results show that HighResMIP and ScenarioMIP simulations can adequately reproduce LVB’s precipitation patterns – albeit with location-specific biases. Generally, the GCM simulations tend to over-estimate precipitation patterns over Lake Victoria while under-estimating precipitation patterns over the lake-adjacent areas. Projections show significant future precipitation changes over the LVB relative to the 1970-1999 baseline, with more pronounced changes over the lake than in lake-adjacent areas. Overall, mean annual precipitation is projected to increase by about 18% and 31% by the end of the century, under SSP2-4.5 and SSP5-8.5 scenarios, respectively. Additionally, mean daily precipitation intensity (SDII) is projected to increase by up-to 14% while the maximum 5-day precipitation values (RX5Day) increase by up-to 71% under the SSP5-8.5 scenario. Heavy precipitation events, represented by the width of the right tail distribution of precipitation (99p-90p), are projected to increase by 50% and 94% under SSP2-4.5 and SSP5-8.5, respectively. Given that direct precipitation accounts for about 80% of Lake Victoria’s water budget, the lake’s future water-level fluctuations are likely to be more rampant and unpredictable under the changing climate. Hence, enhanced production and use of climate services is recommended to minimize the risk posed by potentially high water-level fluctuations in Lake Victoria and, ultimately, enhance the socio-economic safety of communities in the LVB.


2003 ◽  
Vol 60 (2) ◽  
pp. 149-161 ◽  
Author(s):  
Luc Miousse ◽  
Najat Bhiry ◽  
Martin Lavoie

AbstractThis study combines different methods, including grain size, macrofossil, and pollen analyses, to reconstruct paleogeographical and paleoclimatological conditions for periods before, during, and after the isolation of a small lake (Lake Kachishayoot) in northern Québec. After the retreat of the Laurentide Ice Sheet around 800014C yr B.P., the area was submerged by the Tyrrell Sea. The transition from marine to lacustrine environment occurred about 5400 yr B.P. Two major periods of water-level fluctuations were inferred from organic and mineral sediments: a high water level that occurred after 3200 yr B.P. and a low water level that started before 2200 yr B.P. Our chronological data for the first period are consistent with those from nearby Lac des Pluviers and from other lakes in east central Canada and in the northeastern United States. During the low-water-level period, however, there is no evidence for minor fluctuations, whereas other lakes in northern Québec and east-central Canada underwent several brief lowerings. Long-term changes in atmospheric circulation caused by changing global boundary conditions likely explained long-term water-level fluctuations of Lake Kachishayoot.


Author(s):  
Krum Videnov ◽  
Vanya Stoykova

Monitoring water levels of lakes, streams, rivers and other water basins is of essential importance and is a popular measurement for a number of different industries and organisations. Remote water level monitoring helps to provide an early warning feature by sending advance alerts when the water level is increased (reaches a certain threshold). The purpose of this report is to present an affordable solution for measuring water levels in water sources using IoT and LPWAN. The assembled system enables recording of water level fluctuations in real time and storing the collected data on a remote database through LoRaWAN for further processing and analysis.


Sign in / Sign up

Export Citation Format

Share Document