Holocene Environmental Change and River-Mouth Sedimentation in the Baie des Anges, French Riviera

1995 ◽  
Vol 43 (3) ◽  
pp. 329-343 ◽  
Author(s):  
Michel Dubar ◽  
Edward J. Anthony

AbstractRiver mouths on the steep, high-relief coast of the French Riviera exhibit thick sequences of Holocene marine, estuarine, deltaic, and river channel-floodplain sediments that overlie basal fluvial Pleistocene gravel. Gravel is uncommon in most of the early to middle Holocene aggradational-progradational marine, estuarine, deltaic sediments, despite an ample supply from rock units in the steep adjoining uplands. River-mouth gravel is common only in late Holocene river channels and in barrier beaches perched on finer-grained nearshore sediments. Neither downslope grain-size fining on alluvial fans nor sediment stacking patterns during sea-level (base-level) rise readily account for the lack of early to middle Holocene gravel in the river-mouth sediment wedges. Holocene sea-level rise led to the storage of fine-grained sediments in shallow marine, estuarine, and deltaic environments in the present coastal zone. We infer that humid temperate conditions, a dense forest cover, landscape stabilization, and a regular quiescent river flow regime associated with the Atlantic climatic optimum limited gravel supply in the adjoining catchments and gravel entrainment downstream during the early Holocene. Sea-level stabilization in the middle and late Holocene coincided with a marked change in bioclimatic conditions toward the present Mediterranean-type regime, which is characterized by a less dense forest cover, soil erosion, and episodic catastrophic floods. The late Holocene was thus a time of downstream bedload channel aggradation, fine-grained floodplain and paludal sedimentation, and seaward flushing of clasts leading to the formation and consolidation of the gravel barrier beaches that bound the rivermouths and embayments.

Polar Record ◽  
2008 ◽  
Vol 44 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Naja Mikkelsen ◽  
Antoon Kuijpers ◽  
Jette Arneborg

ABSTRACTNorse immigrants from Europe settled in southern Greenland in around AD 985 and managed to create a farming community during the Medieval Warm Period. The Norse vanished after approximately 500 years of existence in Greenland leaving no documentary evidence concerning why their culture foundered. The flooding of fertile grassland caused by late Holocene sea-level changes may be one of the factors that affected the Norse community. Holocene sea-level changes in Greenland are closely connected with the isostatic response of the Earth's crust to the behaviour of the Greenlandic ice sheet. An early Holocene regressive phase in south and west Greenland was reversed during the middle Holocene, and evidence is found for transgression and drowning of early-middle Holocene coast lines. This drowning started between 8 and 7ka BP in southern Greenland and continued during the Norse era to the present. An average late Holocene sea level rise in the order of 2–3 m/1000 years may be one of the factors that negatively affected the life of the Norse Greenlanders, and combined with other both socio-economic and environmental problems, such as increasing wind and sea ice expansion at the transition to the Little Ice Age, may eventually have led to the end of the Norse culture in Greenland.


2017 ◽  
Author(s):  
David J. Mallinson ◽  
◽  
Stephen J. Culver ◽  
Eduardo Leorri ◽  
Ryan Mulligan

2021 ◽  
pp. 102002
Author(s):  
Toshiaki Irizuki ◽  
Jun Takahashi ◽  
Koji Seto ◽  
Hiroaki Ishiga ◽  
Yuki Fujihara ◽  
...  

2007 ◽  
Vol 44 (10) ◽  
pp. 1453-1465 ◽  
Author(s):  
Julia F Daly ◽  
Daniel F Belknap ◽  
Joseph T Kelley ◽  
Trevor Bell

Differential sea-level change in formerly glaciated areas is predicted owing to variability in extent and timing of glacial coverage. Newfoundland is situated close to the margin of the former Laurentide ice sheet, and the orientation of the shoreline affords the opportunity to investigate variable rates and magnitudes of sea-level change. Analysis of salt-marsh records at four sites around the island yields late Holocene sea-level trends. These trends indicate differential sea-level change in recent millennia. A north–south geographic trend reflects submergence in the south, very slow sea-level rise in the northeast, and a recent transition from falling to rising sea-level at the base of the Northern Peninsula. This variability is best explained as a continued isostatic response to deglaciation.


Author(s):  
Daniel J. King ◽  
Rewi M. Newnham ◽  
W. Roland Gehrels ◽  
Kate J. Clark

2020 ◽  
Vol 233 ◽  
pp. 106249 ◽  
Author(s):  
Haixian Xiong ◽  
Yongqiang Zong ◽  
Tanghua Li ◽  
Tengwen Long ◽  
Guangqing Huang ◽  
...  

2007 ◽  
Vol 242 (1-3) ◽  
pp. 27-38 ◽  
Author(s):  
Arto Miettinen ◽  
Henrik Jansson ◽  
Teija Alenius ◽  
Georg Haggrén

2015 ◽  
Vol 107 ◽  
pp. 214-230 ◽  
Author(s):  
Robert L. Barnett ◽  
W. Roland Gehrels ◽  
Dan J. Charman ◽  
Margot H. Saher ◽  
William A. Marshall

Terra Nova ◽  
2008 ◽  
Vol 20 (1) ◽  
pp. 74-81 ◽  
Author(s):  
Stephen E. Lewis ◽  
Raphael A. J. Wüst ◽  
Jody M. Webster ◽  
Graham A. Shields

Sign in / Sign up

Export Citation Format

Share Document