Fluctuations in Terrestrial–Marine Environments in the Western Equatorial Pacific during the Late Pleistocene

2002 ◽  
Vol 57 (1) ◽  
pp. 71-81 ◽  
Author(s):  
Hodaka Kawahata ◽  
Rena Maeda ◽  
Hideaki Ohshima

AbstractLarge heat storage capacity in the western equatorial Pacific has played an important role in modulating global climate. The fluctuation in pollen and spore abundances, together with organic matter (OM) and lithogenics sedimentation, was investigated to reconstruct terrestrial and marine environmental change around New Guinea during the Late Pleistocene. Although appreciable contribution from Indonesian Maritime Continent was expected, the majority of the pollen and spore grains found in core C4402 was transported from New Guinea. Fern spores accounted for 70% (46–90%) of the total pollens and spores. Positive correlation between lithogenic content and the relative abundance of fern spores suggests that lithogenics could be derived from coastal lowland.The mass accumulation rate (MAR) of pollen and spores varied from 44 to 7,031×10−3 grains cm−2 yr−1 with maxima in oxygen isotope stages (OIS) 2, 3, 4, and around the OIS 4/5 boundary. Less rainfall during glacial times generally enhanced transport of pollen by wind to Site C4402. Their scavenging from the water column was promoted by high activity of the biological pump. Pollen record from core C4402 suggests that lower montane group vegetation was dominant relative to lowland vegetation and upper and mid-montane group during glacial times. Although appreciable contribution by terrestrial OM is expected from high correlation of MAR between organic carbon (OC) and pollen and spores, fairly low COrganic/N ratios and δ13C values (around −20‰) of OM demonstrate that OM in core C4402 is mainly of marine origin.

2020 ◽  
Author(s):  
Yilong Lyu

<p>Mooring measurements at ~140°E in the western equatorial Pacific documented greatly intensified eastward subsurface currents, which largely represents the nascent Equatorial Undercurrent (EUC), to ~67 cm s<sup>-1</sup> in boreal summer of 2016. The eastward currents occupied the entire upper 500 m, with the westward surface currents nearly diminished. Similar variations were also observed during previous El Niño events, as suggested by historical in-situ data. Further analysis combining satellite and reanalysis data reveals that the eastward currents observed at ~140°E are a component of an anomalous counterclockwise circulation straddling the equator, with westward current anomalies retroflecting near the western boundary and feeding southeastward current anomalies along New Guinea coast. A 1.5-layer reduced-gravity ocean (RGO) model is able to crudely reproduce these variations, and a hierarchy of sensitivity experiments are performed to understand the underlying dynamics. The observed circulation anomalies are largely the delayed ocean response to the strong equatorial wind anomalies over the central-to-eastern Pacific basin emerging in the mature stage of El Niño (September-April). Downwelling equatorial Rossby waves are generated by the reflection of equatorial Kelvin waves and easterly wind anomalies in the eastern Pacific. Upon reaching western Pacific, the Southern Hemisphere lobe of Rossby waves encounter the slanted New Guinea island and deflects equatorward, establishing a local sea surface height maximum near the equator and leading to the detour of westward currents flowing from the Pacific interior. Additional experiments with edited western boundary geometry confirm the importance of topography in regulating the structure of this cross-equatorial anomalous circulation.</p>


2020 ◽  
Vol 50 (11) ◽  
pp. 3353-3373
Author(s):  
Yilong Lyu ◽  
Yuanlong Li ◽  
Jianing Wang ◽  
Jing Duan ◽  
Xiaohui Tang ◽  
...  

AbstractMooring measurements at ~140°E in the western equatorial Pacific Ocean documented greatly intensified eastward subsurface currents, which largely represent the nascent Equatorial Undercurrent, to ~67 cm s−1 in boreal summer of 2016. The eastward currents occupied the entire upper 500 m while the westward surface currents nearly disappeared. Historical in situ data observed similar variations after most El Niño events. Further analysis combining satellite and reanalysis data reveals that the eastward currents observed at ~140°E are a component of an anomalous counterclockwise circulation straddling the equator, with westward current anomalies retroflecting near the western boundary and feeding southeastward current anomalies along the New Guinea coast. A 1.5-layer reduced-gravity ocean model is able to crudely reproduce these variations, and a hierarchy of sensitivity experiments is performed to understand the underlying dynamics. The anomalous circulation is largely the delayed ocean response to equatorial wind anomalies over the central-to-eastern Pacific basin emerging in the mature stage of El Niño. Downwelling Rossby waves are generated by the reflection of equatorial Kelvin waves and easterly winds in the eastern Pacific. Upon reaching the western Pacific, the southern lobes of Rossby waves encounter the slanted New Guinea island and deflect to the equator, establishing a local sea surface height maximum and leading to the detour of westward currents flowing from the Pacific interior. Additional experiments with edited western boundary geometry confirm the importance of topography in regulating the structure of this cross-equatorial anomalous circulation.


1999 ◽  
Vol 38 (Part 1, No. 5B) ◽  
pp. 3366-3369 ◽  
Author(s):  
Hiroyuki Hachiya ◽  
Toshiaki Nakamura ◽  
Iwao Nakano

Sign in / Sign up

Export Citation Format

Share Document