ontong java plateau
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 19)

H-INDEX

39
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masayuki Obayashi ◽  
Junko Yoshimitsu ◽  
Daisuke Suetsugu ◽  
Hajime Shiobara ◽  
Hiroko Sugioka ◽  
...  

AbstractWe investigated the seismological structure beneath the equatorial Melanesian region, where is tectonically unique because an immense oceanic plateau, a volcanic chain and subduction zones meet. We conducted a multi-frequency P-wave tomography using data collected from an approximately 2-year-long seismic experiment around the Ontong Java Plateau (OJP). High-velocity anomalies were revealed beneath the center of the OJP at a depth of ~ 150 km, the middle-eastern edge of the OJP at depths of 200–300 km, and in the mantle transition zone beneath and around the OJP; low-velocity anomalies were observed along the Caroline volcanic island chain above 450 km depth. These anomalies are considered to be associated with the thick lithosphere of the OJP, remnant dipping Pacific slab, stagnant Pacific slab, and a sheet-like upwelling. The broad stagnant slab was formed due to rapid trench retreat from 48 to 25 Ma until when the OJP with thick lithosphere collided with a subduction boundary of the Pacific and Australian plates. This collision triggered slab breakoff beneath the arc where the dipping slab remained. The stagnant Pacific slab in the mantle transition zone restricted the plume upwelling from the lower mantle causing sheet-like deformed upwelling in the upper mantle.


Geology ◽  
2021 ◽  
Author(s):  
Kohen W. Bauer ◽  
Cinzia Bottini ◽  
Robert Frei ◽  
Dan Asael ◽  
Noah J. Planavsky ◽  
...  

Widespread oceanic anoxia, biological crises, and volcanic activity are associated with the onset of Early Aptian (ca. 120 Ma) Oceanic Anoxic Event 1a (OAE1a). Reconstructions of oceanic deoxygenation and its links to broadly contemporaneous volcanism, however, remain poorly resolved. We use geochemical data, including δ53Cr ratios and rare Earth element abundances, to define the timing and tempo of submarine volcanism and global oceanic deoxygenation across this event. Pacific Ocean sediments deposited in the run up to OAE1a record multiple phases of marine volcanism associated with the emplacement of Ontong Java Plateau lavas. Rapid oceanic deoxygenation followed the initial phases of volcanism and a biocalcification crisis. Large swaths of the oceans likely became anoxic from the Tethys to the Pacific Oceans in <30 k.y. Oceanic anoxia persisted for almost one million years after this and was likely sustained through intensified continental and submarine weathering. These results paint a new picture of OAE1a in which volcanism, biological crisis, and oceanic deoxygenation are separated in time and linked through Earth system responses that operate on time scales of tens of thousands of years.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Takehi Isse ◽  
Daisuke Suetsugu ◽  
Akira Ishikawa ◽  
Hajime Shiobara ◽  
Hiroko Sugioka ◽  
...  

AbstractThe Ontong Java Plateau in the western Pacific Ocean is the world’s largest oceanic plateau. It was formed 122 million years ago by a massive volcanic event that significantly affected Earth’s environment. The cause of the magmatic event remains controversial because the upper mantle structure beneath the plateau is poorly known. Here we use passive seismic data obtained through seafloor observations, alongside existing seismic data, to determine the three-dimensional radially anisotropic shear wave velocity to depths of up to 300 km. We find that the lithosphere–asthenosphere boundary is approximately 40 km deeper beneath the centre of the Ontong Java Plateau than beneath the surrounding seafloor. Based on our results and petrological and rheological constraints, we propose that the lithosphere–asthenosphere boundary has deepened as a result of underplating of dehydrated residual material beneath the pre-existing lithosphere during formation of the Ontong Java Plateau by a thermochemical mantle plume.


2021 ◽  
Author(s):  
Cinzia Bottini ◽  
Victor M. Giraldo-Gómez ◽  
Maria Rose Petrizzo ◽  
Elisabetta Erba

<p>The Cretaceous was punctuated by interludes of widespread deposition of organic-rich sediments (black shales) in the oceans and epicontinental seas, named Oceanic Anoxic Events (OAE)s, representing major alterations in the global carbon budget. The early Aptian OAE 1a (ca. 120 Ma) coincided with a global paleoclimatic and paleoenvironmental perturbation which lasted for ca. 1.1 Myrs probably triggered by volcanogenic CO<sub>2 </sub>emissions associated with the emplacement of the Ontong Java Plateau. To date, there is a comprehensive characterization of OAE 1a paleoceanographic conditions and paleoecology of surface-waters while less information is available for bottom-water evolution. In this regard, benthic foraminifera are ideal to characterize deep-water oxygen levels and the organic carbon flux. We present a high-resolution study of benthic foraminiferal assemblages across OAE 1a in the Cismon Core (western Tethys, Lombardy Basin, Northern Italy). Contrarily to many sites, the Cismon Core yields benthic foraminifera also in the Selli Level thus providing information about deep-water conditions during OAE 1a. Our data are indicative of fluctuations in bottom-water oxygenation and organic-matter flux to the sea-floor prior to, during and after OAE 1a. The integration of the new benthic foraminiferal data with calcareous nannofossil and planktonic foraminiferal datasets is here used to produce a model of surface- to bottom-water paleowater evolution through the latest Barremian-early late Aptian. In particular, the new data show coeval changes in bottom- and surface-waters conditions prior to and at the onset of OAE 1a. Anoxia was reached during the core of the negative carbon isotope anomaly, under maximum warming and higher surface-water fertility. Conversely, the repopulation of benthic foraminifera postponed the plankton recovery. Benthic foraminifera data at Cismon show, for the first time, evidence of a repopulation event during the OAE 1a suggestive for a slight increase in the supply of oxygen to the seafloor during the Selli Level deposition.</p>


2021 ◽  
Vol 565 ◽  
pp. 120078
Author(s):  
Graham Purvis ◽  
Naoko Sano ◽  
Cees van der Land ◽  
Anders Barlow ◽  
Peter Cumpson ◽  
...  

2020 ◽  
Vol 50 (2) ◽  
pp. 111-127
Author(s):  
Tushar Kaushik ◽  
Ashutosh Kumar Singh ◽  
Devesh Kumar Sinha

ABSTRACT A biostratigraphic and biochronological study from the late Neogene–Quaternary section of Ocean Drilling Program (ODP) Site 807A, located on the Ontong Java Plateau, western equatorial Pacific, revealed 50 planktic foraminiferal events, enabling the identification of eight late Neogene–Quaternary biozones, from the Globorotalia plesiotumida Interval Zone to the Globorotalia truncatulinoides Interval Zone. A significant faunal turnover (17 events) from late Pliocene identified in cores 7 and 8, between 70 and 55 meters below seafloor (mbsf), and spanning 0.67 million years (Myr). This noteworthy turnover may be the result of a shift in oceanographic conditions pertaining to the closure of the Indo–Pacific Seaway, followed by the Northern Hemisphere Glaciation. This study provides a high resolution biostratigraphic and biochronological framework for ODP Site 807A that will aid in correlation and timing the various paleoceanographic changes over the last 6 million years in the western equatorial Pacific.


Sign in / Sign up

Export Citation Format

Share Document