Vascular patterning by Eph receptor tyrosine kinases and ephrins

2002 ◽  
Vol 13 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Ralf H Adams
Cell ◽  
1995 ◽  
Vol 82 (3) ◽  
pp. 359-370 ◽  
Author(s):  
Uwe Drescher ◽  
Claus Kremoser ◽  
Claudia Handwerker ◽  
Jürgen Löschinger ◽  
Masaharu Noda ◽  
...  

2004 ◽  
Vol 379 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Eivind F. FINNE ◽  
Else MUNTHE ◽  
Hans-Christian AASHEIM

Ephrins are ligands for the Eph receptor tyrosine kinases, which play important roles in patterning nervous and vascular systems. Ephrin-A1 is a glycosylphosphatidylinositol-anchored ligand that binds to the EphA receptor tyrosine kinases. In the present study, we have identified a new ephrin-A1 isoform, denoted ephrin-A1b (ephrin-A1 isoform b). Compared with the originally described ephrin-A1 sequence, ephrin-A1a [Holzman, Marks and Dixit (1990) Mol. Cell. Biol. 10, 5830–5838], ephrin-A1b lacks a segment of 22 amino acids (residues 131–152). At the transcript level, exon 3 is spliced out in the transcript encoding ephrin-A1b. Transfection of HEK-293T cells (human embryonic kidney 293 cells) with an ephrin-A1b-expressing plasmid resulted in a significant expression of the protein on the cell surface. However, soluble EphA2 receptor (EphA2-Fc) bound weakly to ephrin-A1b-expressing transfectants, but bound strongly to ephrin-A1a-expressing transfectants. Ephrins have been shown to undergo regulated cleavage after interaction with their receptors. This process is inhibited by co-expression of ephrin-A1a and ephrin-A1b, indicating that ephrin-A1b influences the cleavage process. Taken together, these findings indicate that this newly described isoform may regulate the function of its ephrin-A1a counterpart.


2020 ◽  
Vol 295 (29) ◽  
pp. 9917-9933 ◽  
Author(s):  
Michael D. Paul ◽  
Hana N. Grubb ◽  
Kalina Hristova

Receptor tyrosine kinases (RTKs) are single-pass membrane proteins that control vital cell processes such as cell growth, survival, and differentiation. There is a growing body of evidence that RTKs from different subfamilies can interact and that these diverse interactions can have important biological consequences. However, these heterointeractions are often ignored, and their strengths are unknown. In this work, we studied the heterointeractions of nine RTK pairs, epidermal growth factor receptor (EGFR)–EPH receptor A2 (EPHA2), EGFR–vascular endothelial growth factor receptor 2 (VEGFR2), EPHA2–VEGFR2, EPHA2–fibroblast growth factor receptor 1 (FGFR1), EPHA2–FGFR2, EPHA2–FGFR3, VEGFR2–FGFR1, VEGFR2–FGFR2, and VEGFR2–FGFR3, using a FRET-based method. Surprisingly, we found that RTK heterodimerization and homodimerization strengths can be similar, underscoring the significance of RTK heterointeractions in signaling. We discuss how these heterointeractions can contribute to the complexity of RTK signal transduction, and we highlight the utility of quantitative FRET for probing multiple interactions in the plasma membrane.


1999 ◽  
Vol 41 (6) ◽  
pp. 685-698 ◽  
Author(s):  
Hiroko Iwamasa ◽  
Kunimasa Ohta ◽  
Tomoko Yamada ◽  
Kazuo Ushijima ◽  
Hidenori Terasaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document