metastatic progression
Recently Published Documents


TOTAL DOCUMENTS

717
(FIVE YEARS 296)

H-INDEX

56
(FIVE YEARS 11)

Author(s):  
Dan Wang ◽  
Dazhi Long ◽  
Jiegang Zhou ◽  
Ziqiang Dong ◽  
Guiming Huang

Background: Dexmedetomidine has been reported to induce anti-apoptotic effects and metastatic progression in lung cancer. In the current investigation, the effect of β-Caryophyllene on dexmedetomidine induced cell proliferation and apoptosis of lung cancer cells and tumor growth in mice was studied. Methods: A549 cell line was cultured with either dexmedetomidine alone or together with β-Caryophyllene for 24 h and analysed for cell proliferation with MTT assay. ELISA based kit was used to determine apoptotic DNA fragmentation. Western blotting was used to determine expression levels of target proteins. The induction of experimental lung tumor in rat model was achieved through the injection of A549 tumor cells subcutaneously into the middle left side of the mice after anesthetization with pentobarbital (35 mg/kg) at 2.8 × 106 cells in 400 μl of PBS. Result: We found that β-Caryophyllene exerts the anti-proliferative effects on A549 cells. Furthermore, β-Caryophyllene significantly prevents apoptotic cell death and causes up-regulation of PGC-1α and TFAM compared to dexmedetomidine treated cells. We observed that β-Caryophyllene suppressed tumor development in mice significantly compared to dexmedetomidine treated group without changing body weight.


NAR Cancer ◽  
2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Eirik Høye ◽  
Bastian Fromm ◽  
Paul H M Böttger ◽  
Diana Domanska ◽  
Annette Torgunrud ◽  
...  

ABSTRACT Although microRNAs (miRNAs) contribute to all hallmarks of cancer, miRNA dysregulation in metastasis remains poorly understood. The aim of this work was to reliably identify miRNAs associated with metastatic progression of colorectal cancer (CRC) using novel and previously published next-generation sequencing (NGS) datasets generated from 268 samples of primary (pCRC) and metastatic CRC (mCRC; liver, lung and peritoneal metastases) and tumor adjacent tissues. Differential expression analysis was performed using a meticulous bioinformatics pipeline, including only bona fide miRNAs, and utilizing miRNA-tailored quality control and processing. Five miRNAs were identified as up-regulated at multiple metastatic sites Mir-210_3p, Mir-191_5p, Mir-8-P1b_3p [mir-141–3p], Mir-1307_5p and Mir-155_5p. Several have previously been implicated in metastasis through involvement in epithelial-to-mesenchymal transition and hypoxia, while other identified miRNAs represent novel findings. The use of a publicly available pipeline facilitates reproducibility and allows new datasets to be added as they become available. The set of miRNAs identified here provides a reliable starting-point for further research into the role of miRNAs in metastatic progression.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 360
Author(s):  
Guillaume Anthony Odri ◽  
Joëlle Tchicaya-Bouanga ◽  
Diane Ji Yun Yoon ◽  
Dominique Modrowski

Metastases of osteosarcomas are heterogeneous. They may grow simultaneously with the primary tumor, during treatment or shortly after, or a long time after the end of the treatment. They occur mainly in lungs but also in bone and various soft tissues. They can have the same histology as the primary tumor or show a shift towards a different differentiation path. However, the metastatic capacities of osteosarcoma cells can be predicted by gene and microRNA signatures. Despite the identification of numerous metastasis-promoting/predicting factors, there is no efficient therapeutic strategy to reduce the number of patients developing a metastatic disease or to cure these metastatic patients, except surgery. Indeed, these patients are generally resistant to the classical chemo- and to immuno-therapy. Hence, the knowledge of specific mechanisms should be extended to reveal novel therapeutic approaches. Recent studies that used DNA and RNA sequencing technologies highlighted complex relations between primary and secondary tumors. The reported results also supported a hierarchical organization of the tumor cell clones, suggesting that cancer stem cells are involved. Because of their chemoresistance, their plasticity, and their ability to modulate the immune environment, the osteosarcoma stem cells could be important players in the metastatic process.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 123
Author(s):  
Olga S. Cherepakhin ◽  
Zsolt B. Argenyi ◽  
Ata S. Moshiri

Melanoma is a deadly skin cancer with rapidly increasing incidence worldwide. The discovery of the genetic drivers of melanomagenesis in the last decade has led the World Health Organization to reclassify melanoma subtypes by their molecular pathways rather than traditional clinical and histopathologic features. Despite this significant advance, the genomic and transcriptomic drivers of metastatic progression are less well characterized. This review describes the known molecular pathways of cutaneous and uveal melanoma progression, highlights recently identified pathways and mediators of metastasis, and touches on the influence of the tumor microenvironment on metastatic progression and treatment resistance. While targeted therapies and immune checkpoint blockade have significantly aided in the treatment of advanced disease, acquired drug resistance remains an unfortunately common problem, and there is still a great need to identify potential prognostic markers and novel therapeutic targets to aid in such cases.


Author(s):  
P. A. Bousquet ◽  
S. Meltzer ◽  
A. J. Fuglestad ◽  
T. Lüders ◽  
Y. Esbensen ◽  
...  

Abstract Purpose A significant percentage of colorectal cancer patients proceeds to metastatic disease. We hypothesised that mitochondrial DNA (mtDNA) polymorphisms, generated by the high mtDNA mutation rate of energy-demanding clonal immune cell expansions and assessable in peripheral blood, reflect how efficiently systemic immunity impedes metastasis. Patients and methods We studied 44 rectal cancer patients from a population-based prospective biomarker study, given curative-intent neoadjuvant radiation and radical surgery for high-risk tumour stage and followed for metastatic failure. Blood specimens were sampled at the time of diagnosis and analysed for the full-length mtDNA sequence, composition of immune cell subpopulations and damaged serum mtDNA. Results Whole blood total mtDNA variant number above the median value for the study cohort, coexisting with an mtDNA non-H haplogroup, was representative for the mtDNA of circulating immune cells and associated with low risk of a metastatic event. Abundant mtDNA variants correlated with proliferating helper T cells and cytotoxic effector T cells in the circulation. Patients without metastatic progression had high relative levels of circulating tumour-targeting effector T cells and, of note, the naïve (LAG-3+) helper T-cell population, with the proportion of LAG-3+ cells inversely correlating with cell-free damaged mtDNA in serum known to cause antagonising inflammation. Conclusion Numerous mtDNA polymorphisms in peripheral blood reflected clonal expansion of circulating helper and cytotoxic T-cell populations in patients without metastatic failure. The statistical associations suggested that patient’s constitutional mtDNA manifests the helper T-cell capacity to mount immunity that controls metastatic susceptibility. Trial registration ClinicalTrials.gov NCT01816607; registration date: 22 March 2013.


2021 ◽  
Author(s):  
Juntaro Yamasaki ◽  
Yuki Hirata ◽  
Yuji Otsuki ◽  
Kentaro Suina ◽  
Yoshiyuki Saito ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6388
Author(s):  
Ying Dong ◽  
Xiaozeng Lin ◽  
Anil Kapoor ◽  
Yan Gu ◽  
Hui Xu ◽  
...  

Prostate cancer (PC) is a major cause of cancer death in men. The disease has a great disparity in prognosis. Although low grade PCs with Gleason scores ≤ 6 are indolent, high-risk PCs are likely to relapse and metastasize. The standard of care for metastatic PC (mPC) remains androgen deprivation therapy (ADT). Resistance commonly occurs in the form of castration resistant PC (CRPC). Despite decades of research efforts, CRPC remains lethal. Understanding of mechanisms underpinning metastatic progression represents the overarching challenge in PC research. This progression is regulated by complex mechanisms, including those regulating PC cell proliferation, epithelial–mesenchymal transition (EMT), and androgen receptor (AR) signaling. Among this PC metastatic network lies an intriguing suppressor of PC metastasis: the Raf kinase inhibitory protein (RKIP). Clinically, the RKIP protein is downregulated in PC, and showed further reduction in mPC. In xenograft mouse models for PC, RKIP inhibits metastasis. In vitro, RKIP reduces PC cell invasion and sensitizes PC cells to therapeutic treatments. Mechanistically, RKIP suppresses Raf-MEK-ERK activation and EMT, and modulates extracellular matrix. In return, Snail, NFκB, and the polycomb protein EZH2 contribute to inhibition of RKIP expression. In this review, we will thoroughly analyze RKIP’s tumor suppression actions in PC.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Joji Nakayama ◽  
Lora Tan ◽  
Yan Li ◽  
Boon Cher Goh ◽  
Shu Wang ◽  
...  

Metastasis is responsible for approximately 90% of cancer-associated mortality but few models exist that allow for rapid and effective screening of anti-metastasis drugs. Current mouse models of metastasis are too expensive and time consuming to use for rapid and high-throughput screening. Therefore, we created a unique screening concept utilizing conserved mechanisms between zebrafish gastrulation and cancer metastasis for identification of potential anti-metastatic drugs. We hypothesized that small chemicals that interrupt zebrafish gastrulation might also suppress metastatic progression of cancer cells and developed a phenotype-based chemical screen to test the hypothesis. The screen used epiboly, the first morphogenetic movement in gastrulation, as a marker and enabled 100 chemicals to be tested in five hours. The screen tested 1280 FDA-approved drugs and identified Pizotifen, an antagonist for serotonin receptor 2C (HTR2C) as an epiboly-interrupting drug. Pharmacologic and genetic inhibition of HTR2C suppressed metastatic progression in a mouse model. Blocking HTR2C with Pizotifen restored epithelial properties to metastatic cells through inhibition of Wnt-signaling. In contrast, HTR2C induced epithelial to mesenchymal transition (EMT) through activation of Wnt-signaling and promoted metastatic dissemination of human cancer cells in a zebrafish xenotransplantation model. Taken together, our concept offers a novel platform for discovery of anti-metastasis drugs.


2021 ◽  
pp. canres.CAN-21-3908-A.2021
Author(s):  
Manuel C Scheidmann ◽  
Francesc Castro-Giner ◽  
Karin Strittmatter ◽  
Ilona Krol ◽  
Aino Paasinen-Sohns ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document