scholarly journals Cellular Factors in the Transcription and Replication of Viral RNA Genomes: A Parallel to DNA-Dependent RNA Transcription

Virology ◽  
1998 ◽  
Vol 244 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Michael M.C. Lai
2017 ◽  
Vol 91 (20) ◽  
Author(s):  
Shu-Chuan Chen ◽  
King-Song Jeng ◽  
Michael M. C. Lai

ABSTRACT Influenza A virus (IAV) replication relies on an intricate interaction between virus and host cells. How the cellular proteins are usurped for IAV replication remains largely obscure. The aim of this study was to search for novel and potential cellular factors that participate in IAV replication. ZBTB25, a transcription repressor of a variety of cellular genes, was identified by an RNA interference (RNAi) genomic library screen. Depletion of ZBTB25 significantly reduced IAV production. Conversely, overexpression of ZBTB25 enhanced it. ZBTB25 interacted with the viral RNA-dependent RNA polymerase (RdRp) protein and modulated its transcription activity. In addition, ZBTB25 also functioned as a viral RNA (vRNA)-binding protein, binding preferentially to the U-rich sequence within the 5′ untranslated region (UTR) of vRNA. Both protein-protein and protein-RNA interactions involving ZBTB25 facilitated viral RNA transcription and replication. In addition, ZBTB25 suppressed interferon production, further enhancing viral replication. ZBTB25-associated functions required an intact zinc finger domain and posttranslational SUMO-1 modification of ZBTB25. Furthermore, treatment with disulfiram (a zinc ejector) of ZBTB25-overexpressing cells showed significantly reduced IAV production as a result of reduced RNA synthesis. Our findings indicate that IAV usurps ZBTB25 for IAV RNA synthesis and serves as a novel and potential therapeutic antiviral target. IMPORTANCE IAV-induced seasonal influenza causes severe illness and death in high-risk populations. However, IAV has developed resistance to current antiviral drugs due to its high mutation rate. Therefore, development of drugs targeting cellular factors required for IAV replication is an attractive alternative for IAV therapy. Here, we discovered a cellular protein, ZBTB25, that enhances viral RdRp activity by binding to both viral RdRp and viral RNA to stimulate viral RNA synthesis. A unique feature of ZBTB25 in the regulation of viral replication is its dual transcription functions, namely, promoting viral RNA transcription through binding to the U-rich region of vRNA and suppressing cellular interferon production. ZBTB25 contains a zinc finger domain that is required for RNA-inhibitory activity by chelating zinc ions. Disulfiram treatment disrupts the zinc finger functions, effectively repressing IAV replication. Based on our findings, we demonstrate that ZBTB25 regulates IAV RNA transcription and replication and serves as a promising antiviral target for IAV treatment.


Microbiology ◽  
2000 ◽  
Vol 81 (1) ◽  
pp. 129-133 ◽  
Author(s):  
Nieves Villanueva ◽  
Richard Hardy ◽  
Ana Asenjo ◽  
Qingzhong Yu ◽  
Gail Wertz

The ability of variants of the human respiratory syncytial virus (HRSV) phosphoprotein (P protein) to support RNA transcription and replication has been studied by using HRSV-based subgenomic replicons. The serine residues normally phosphorylated in P during HRSV infection have been replaced by other residues. The results indicate that the bulk of phosphorylation of P (98%) is not essential for viral RNA transcription or replication but that phosphorylation can modulate these processes.


2015 ◽  
Vol 89 (14) ◽  
pp. 7338-7347 ◽  
Author(s):  
James Zengel ◽  
Adrian Pickar ◽  
Pei Xu ◽  
Alita Lin ◽  
Biao He

ABSTRACTMumps virus (MuV) is a paramyxovirus with a negative-sense nonsegmented RNA genome. The viral RNA genome is encapsidated by the nucleocapsid protein (NP) to form the ribonucleoprotein (RNP), which serves as a template for transcription and replication. In this study, we investigated the roles of phosphorylation sites of NP in MuV RNA synthesis. Using radioactive labeling, we first demonstrated that NP was phosphorylated in MuV-infected cells. Using both liquid chromatography-mass spectrometry (LC-MS) andin silicomodeling, we identified nine putative phosphorylated residues within NP. We mutated these nine residues to alanine. Mutation of the serine residue at position 439 to alanine (S439A) was found to reduce the phosphorylation of NP in transfected cells by over 90%. The effects of these mutations on the MuV minigenome system were examined. The S439A mutant was found to have higher activity, four mutants had lower activity, and four mutants had similar activity compared to wild-type NP. MuV containing the S439A mutation had 90% reduced phosphorylation of NP and enhanced viral RNA synthesis and viral protein expression at early time points after infection, indicating that S439 is the major phosphorylation site of NP and its phosphorylation plays an important role in downregulating viral RNA synthesis.IMPORTANCEMumps virus (MuV), a paramyxovirus, is an important human pathogen that is reemerging in human populations. Nucleocapsid protein (NP) of MuV is essential for viral RNA synthesis. We have identified the major phosphorylation site of NP. We have found that phosphorylation of NP plays a critical role in regulating viral RNA synthesis. The work will lead to a better understanding of viral RNA synthesis and possible novel targets for antiviral drug development.


2010 ◽  
Vol 84 (24) ◽  
pp. 12790-12800 ◽  
Author(s):  
Dibyakanti Mandal ◽  
Zehua Feng ◽  
C. Martin Stoltzfus

ABSTRACT HIV-1 RNA undergoes a complex splicing process whereby over 40 different mRNA species are produced by alternative splicing. In addition, approximately half of the RNA transcripts remain unspliced and either are used to encode Gag and Gag-Pol proteins or are packaged into virions as genomic RNA. It has previously been shown that HIV-1 splicing is regulated by cis elements that bind to cellular factors. These factors either enhance or repress definition of exons that are flanked by the HIV-1 3′ splice sites. Here we report that expression of modified U1 snRNPs with increased affinity to HIV-1 downstream 5′ splice sites and to sequences within the first tat coding exon act to selectively increase splicing at the upstream 3′ splice sites in cotransfected 293T cells. This results in a decrease of unspliced viral RNA levels and an approximately 10-fold decrease in virus production. In addition, excessive splicing of viral RNA is concomitant with a striking reduction in the relative amounts of Gag processing intermediates and products. We also show that T cell lines expressing modified U1 snRNAs exhibit reduced HIV-1 replication. Our results suggest that induction of excessive HIV-1 RNA splicing may be a novel strategy to inhibit virus replication in human patients.


2021 ◽  
Author(s):  
Ashley C. Beavis ◽  
Kim C. Tran ◽  
Enrico R. Barrozo ◽  
Shannon I. Phan ◽  
Michael N. Teng ◽  
...  

Respiratory syncytial virus (RSV) is a single-stranded, negative-sense, RNA virus in the family Pneumoviridae and genus Orthopneumoviridae that can cause severe disease in infants, immunocompromised adults, and the elderly. The RSV viral RNA-dependent RNA polymerase (vRdRp) complex is composed of the phosphoprotein (P) and the large polymerase protein (L). The P protein is constitutively phosphorylated by host kinases and has 41 serine (S) and threonine (T) residues as potential phosphorylation sites. To identify important phosphorylation residues in the P protein, we systematically and individually mutated all serine S and T residues to alanine (A) and first analyzed their effect on genome transcription and replication using a minigenome system. We found that the mutation of eight residues resulted in significantly reduced minigenome activity compared to wild-type P. We then incorporated these mutations (T210A, S203A, T151A, S156A, T160A, S23A, T188A, and T105A) into full-length genome cDNA to rescue recombinant RSV. We were able to recover four recombinant viruses (T151A, S156A, T160A, and S23A), suggesting RSV-P residues T210, S203, T188, and T105 are essential for viral RNA replication. Among the four rescued, rRSV-T160A caused a minor growth defect compared to its parental virus while rRSV-S156A had severely restricted replication due to decreased levels of genomic RNA. During infection, P-S156A phosphorylation was decreased, and when passaged, the S156A virus acquired a known compensatory mutation in L (L795I) that enhanced both WT-P and P-S156A minigenome activity and was able to partially rescue the S156A viral growth defect. This work demonstrates that residues T210, S203, T188, and T105 are critical for RSV replication, and S156 plays a critical role in viral RNA synthesis. Importance RSV-P is a heavily phosphorylated protein that is required for RSV replication. In this study, we identified several residues, including P-S156, as phosphorylation sites that play critical roles in efficient viral growth and genome replication. Future studies to identify the specific kinase(s) that phosphorylate these residues can lead to kinase inhibitors and anti-viral drugs for this important human pathogen.


2009 ◽  
Vol 90 (6) ◽  
pp. 1398-1407 ◽  
Author(s):  
Nicole C. Robb ◽  
Matt Smith ◽  
Frank T. Vreede ◽  
Ervin Fodor

The influenza virus RNA polymerase transcribes the negative-sense viral RNA segments (vRNA) into mRNA and replicates them via complementary RNA (cRNA) intermediates into more copies of vRNA. It is not clear how the relative amounts of the three RNA products, mRNA, cRNA and vRNA, are regulated during the viral life cycle. We found that in viral ribonucleoprotein (vRNP) reconstitution assays involving only the minimal components required for viral transcription and replication (the RNA polymerase, the nucleoprotein and a vRNA template), the relative levels of accumulation of RNA products differed from those observed in infected cells, suggesting a regulatory role for additional viral proteins. Expression of the viral NS2/NEP protein in RNP reconstitution assays affected viral RNA levels by reducing the accumulation of transcription products and increasing the accumulation of replication products to more closely resemble those found during viral infection. This effect was functionally conserved in influenza A and B viruses and was influenza-virus-type-specific, demonstrating that the NS2/NEP protein changes RNA levels by specific alteration of the viral transcription and replication machinery, rather than through an indirect effect on the host cell. Although NS2/NEP has been shown previously to play a role in the nucleocytoplasmic export of viral RNPs, deletion of the nuclear export sequence region that is required for its transport function did not affect the ability of the protein to regulate RNA levels. A role for the NS2/NEP protein in the regulation of influenza virus transcription and replication that is independent of its viral RNP export function is proposed.


Sign in / Sign up

Export Citation Format

Share Document