Structural requirements of hyperalgesic nociceptin in receptor binding and activation

Author(s):  
T. Nose ◽  
R. Nakashima ◽  
R. Hatano ◽  
T. Sujaku ◽  
Y. Yamada ◽  
...  
2003 ◽  
Vol 77 (15) ◽  
pp. 8588-8592 ◽  
Author(s):  
Louise M. C. Webb ◽  
Ian Clark-Lewis ◽  
Antonio Alcami

ABSTRACT Viruses encode proteins that disrupt chemokine responses. The murine gammaherpesvirus 68 gene M3 encodes a chemokine binding protein (vCKBP-3) which has no sequence similarity to chemokine receptors but inhibits chemokine receptor binding and activity. We have used a panel of CXCL8 analogs to identify the structural requirements for CXCL8 to bind to vCKBP-3 in a scintillation proximity assay. Our data suggest that vCKBP-3 acts by mimicking the binding of chemokine receptors to CXCL8.


Peptides ◽  
1986 ◽  
Vol 7 ◽  
pp. 75-78 ◽  
Author(s):  
Maura Maletti ◽  
Mats Carlquist ◽  
Bernard Portha ◽  
Micheline Kergoat ◽  
Viktor Mutt ◽  
...  

Biochemistry ◽  
2006 ◽  
Vol 45 (51) ◽  
pp. 15338-15348 ◽  
Author(s):  
Malgorzata Zakrzewska ◽  
Daniel Krowarsch ◽  
Antoni Wiedlocha ◽  
Sjur Olsnes ◽  
Jacek Otlewski

2002 ◽  
Vol 8 (10) ◽  
pp. 561-569 ◽  
Author(s):  
Michiaki Kawano ◽  
Kazushi Okada ◽  
Takeshi Honda ◽  
Takeru Nose ◽  
Kazuyasu Sakaguchi ◽  
...  

Blood ◽  
1994 ◽  
Vol 84 (7) ◽  
pp. 2329-2339 ◽  
Author(s):  
Z Yan ◽  
J Zhang ◽  
JC Holt ◽  
GJ Stewart ◽  
S Niewiarowski ◽  
...  

Abstract Using recombinantly expressed proteins and synthetic peptides, we examined the structural/functional features of the platelet chemokines, neutrophil-activating peptide-2 (NAP-2) and platelet factor 4 (PF4); that were important in their activation of neutrophils. Previous studies with the chemokine interleukin-8 (IL-8) had shown that the N- terminal region preceding the first cysteine residue was critical in defining neutrophil-activating properties. We examined whether NAP-2 and PF4 had similar structural requirements. In the Ale-glu-leu-arg (AELR) N-terminus of NAP-2, substitution of E or R abolished Ca2+ mobilization and elastase secretion. Unlike the parent molecule PF4, AELR/PF4, the hybrid formed by replacing the N-terminal sequence of PF4 before the first cysteine residue with the homologous sequence of NAP- 2, stimulated Ca2+ mobilization and elastase secretion. Furthermore, the effect of amino acid substitutions in the ELR motif differed from those seen with NAP-2 in that conserved substitutions of E or R in NAP- 2 abolished activity, but only reduced neutrophil activation in the hybrid. These studies show that just as with IL-8, the N-termini of NAP- 2 and PF4 are critical for high-level neutrophil-activating function. Desensitization studies provided information on receptor binding. NAP- 2, which binds almost exclusively to the type 2 IL-8 receptor (IL-8R), did not desensitize neutrophils to activation by IL-8 because IL-8 could bind to and activate via both type 1 and 2 IL-8R. AELR/PF4 appears to bind to both types of receptors because it desensitized neutrophils to NAP-2 activation; but was not desensitized by NAP-2, and because it desensitized to and was desensitized by IL-8. Thus, although NAP-2 and AELR/PF4 share approximately 60% amino acid homology, they have different receptor affinities. Studies were performed to define the role of the C-termini of these platelet chemokines in receptor binding. Heparin and a monoclonal antibody specific for the heparin- binding domain of PF4 both inhibited Ca2+ mobilization and elastase release, further suggesting that the C-terminus of these chemokines is important in receptor binding. Synthetic NAP-2(51–70) failed to mobilize Ca2+, whereas PF4(47-–70) and PF4(58–70) induced Ca2+ mobilization and secretion of elastase at high concentrations. Pertussis toxin inhibited neutrophil activation by 40% to 50%, establishing a role for G-protein-coupled receptors such as the IL-8Rs in activation by the PF4 C-terminal peptides.(ABSTRACT TRUNCATED AT 400 WORDS)


1991 ◽  
Vol 261 (3) ◽  
pp. E319-E324
Author(s):  
R. L. Gingerich ◽  
J. O. Akpan ◽  
W. R. Gilbert ◽  
K. M. Leith ◽  
J. A. Hoffmann ◽  
...  

Pancreatic polypeptide (PP) receptors have been identified and characterized on the basolateral membranes (BLM) of canine intestinal mucosa. The present study was designed to ascertain the structural requirements of the PP molecule for binding to its receptor. A radioreceptor assay using purified BLM was employed to elucidate receptors specific to PPs of various mammalian species and to modified bovine PP (bPP) fragments. Receptor cross-reactivities (CR) to various PPs and bPP fragments were established. Results show that percent receptor CR by PPs of various species was as follows: bPP (100%) greater than human PP (68%) greater than porcine PP (50%) greater than canine PP (45%) greater than ovine PP (36%) greater than rat PP (3%). The fragments bPP-(1-15), bPP-(1-17), bPP-(1-26), bPP-(16-23), bPP-(18-30), bPP-(24-36), bPP-(27-35), and bPP-(31-36) at 500 nM did not significantly displace tracer from receptor (less than 0.1% CR). Des-COOH-terminal tyrosinamide [bPP-(1-35)] produced less than 0.1% CR. Oxidation of bPP methionine-30 residue to methionine sulfoxide decreased displacement to 67%. Modification of native amidated tyrosinamide to the free acid abolished receptor binding, whereas esterification to the methyl ester of COOH-terminal tyrosine restored binding to 60%. Additionally, percent CR decreased progressively as amino acid residues were deleted from the NH2-terminal region. We conclude that the molecular homologue of PP primary structure is necessary for full receptor binding. Both the NH2- and COOH-terminal residues are required for recognition, and the COOH-terminal tyrosinamide must be intact for PP binding to its receptor.


Sign in / Sign up

Export Citation Format

Share Document