Optimal two-dimensional perturbations in a stretched shear layer

Author(s):  
Stéphane Le Dizès
Keyword(s):  
2001 ◽  
Vol 448 ◽  
pp. 53-80 ◽  
Author(s):  
Z. LIU ◽  
R. J. ADRIAN ◽  
T. J. HANRATTY

Turbulent flow in a rectangular channel is investigated to determine the scale and pattern of the eddies that contribute most to the total turbulent kinetic energy and the Reynolds shear stress. Instantaneous, two-dimensional particle image velocimeter measurements in the streamwise-wall-normal plane at Reynolds numbers Reh = 5378 and 29 935 are used to form two-point spatial correlation functions, from which the proper orthogonal modes are determined. Large-scale motions – having length scales of the order of the channel width and represented by a small set of low-order eigenmodes – contain a large fraction of the kinetic energy of the streamwise velocity component and a small fraction of the kinetic energy of the wall-normal velocities. Surprisingly, the set of large-scale modes that contains half of the total turbulent kinetic energy in the channel, also contains two-thirds to three-quarters of the total Reynolds shear stress in the outer region. Thus, it is the large-scale motions, rather than the main turbulent motions, that dominate turbulent transport in all parts of the channel except the buffer layer. Samples of the large-scale structures associated with the dominant eigenfunctions are found by projecting individual realizations onto the dominant modes. In the streamwise wall-normal plane their patterns often consist of an inclined region of second quadrant vectors separated from an upstream region of fourth quadrant vectors by a stagnation point/shear layer. The inclined Q4/shear layer/Q2 region of the largest motions extends beyond the centreline of the channel and lies under a region of fluid that rotates about the spanwise direction. This pattern is very similar to the signature of a hairpin vortex. Reynolds number similarity of the large structures is demonstrated, approximately, by comparing the two-dimensional correlation coefficients and the eigenvalues of the different modes at the two Reynolds numbers.


2000 ◽  
Vol 12 (10) ◽  
pp. 2489 ◽  
Author(s):  
Jean Reinaud ◽  
Laurent Joly ◽  
Patrick Chassaing

AIAA Journal ◽  
2008 ◽  
Vol 46 (11) ◽  
pp. 2787-2795 ◽  
Author(s):  
R. Mark Rennie ◽  
Daniel A. Duffin ◽  
Eric J. Jumper

2000 ◽  
Vol 413 ◽  
pp. 1-47 ◽  
Author(s):  
C. P. CAULFIELD ◽  
W. R. PELTIER

We investigate the detailed nature of the ‘mixing transition’ through which turbulence may develop in both homogeneous and stratified free shear layers. Our focus is upon the fundamental role in transition, and in particular the associated ‘mixing’ (i.e. small-scale motions which lead to an irreversible increase in the total potential energy of the flow) that is played by streamwise vortex streaks, which develop once the primary and typically two-dimensional Kelvin–Helmholtz (KH) billow saturates at finite amplitude.Saturated KH billows are susceptible to a family of three-dimensional secondary instabilities. In homogeneous fluid, secondary stability analyses predict that the stream-wise vortex streaks originate through a ‘hyperbolic’ instability that is localized in the vorticity braids that develop between billow cores. In sufficiently strongly stratified fluid, the secondary instability mechanism is fundamentally different, and is associated with convective destabilization of the statically unstable sublayers that are created as the KH billows roll up.We test the validity of these theoretical predictions by performing a sequence of three-dimensional direct numerical simulations of shear layer evolution, with the flow Reynolds number (defined on the basis of shear layer half-depth and half the velocity difference) Re = 750, the Prandtl number of the fluid Pr = 1, and the minimum gradient Richardson number Ri(0) varying between 0 and 0.1. These simulations quantitatively verify the predictions of our stability analysis, both as to the spanwise wavelength and the spatial localization of the streamwise vortex streaks. We track the nonlinear amplification of these secondary coherent structures, and investigate the nature of the process which actually triggers mixing. Both in stratified and unstratified shear layers, the subsequent nonlinear amplification of the initially localized streamwise vortex streaks is driven by the vertical shear in the evolving mean flow. The two-dimensional flow associated with the primary KH billow plays an essentially catalytic role. Vortex stretching causes the streamwise vortices to extend beyond their initially localized regions, and leads eventually to a streamwise-aligned collision between the streamwise vortices that are initially associated with adjacent cores.It is through this collision of neighbouring streamwise vortex streaks that a final and violent finite-amplitude subcritical transition occurs in both stratified and unstratified shear layers, which drives the mixing process. In a stratified flow with appropriate initial characteristics, the irreversible small-scale mixing of the density which is triggered by this transition leads to the development of a third layer within the flow of relatively well-mixed fluid that is of an intermediate density, bounded by narrow regions of strong density gradient.


2011 ◽  
Vol 681 ◽  
pp. 411-433 ◽  
Author(s):  
HEMANT K. CHAURASIA ◽  
MARK C. THOMPSON

A detailed numerical study of the separating and reattaching flow over a square leading-edge plate is presented, examining the instability modes governing transition from two- to three-dimensional flow. Under the influence of background noise, experiments show that the transition scenario typically is incompletely described by either global stability analysis or the transient growth of dominant optimal perturbation modes. Instead two-dimensional transition effectively can be triggered by the convective Kelvin–Helmholtz (KH) shear-layer instability; although it may be possible that this could be described alternatively in terms of higher-order optimal perturbation modes. At least in some experiments, observed transition occurs by either: (i) KH vortices shedding downstream directly and then almost immediately undergoing three-dimensional transition or (ii) at higher Reynolds numbers, larger vortical structures are shed that are also three-dimensionally unstable. These two paths lead to distinctly different three-dimensional arrangements of vortical flow structures. This paper focuses on the mechanisms underlying these three-dimensional transitions. Floquet analysis of weakly periodically forced flow, mimicking the observed two-dimensional quasi-periodic base flow, indicates that the two-dimensional vortex rollers shed from the recirculation region become globally three-dimensionally unstable at a Reynolds number of approximately 380. This transition Reynolds number and the predicted wavelength and flow symmetries match well with those of the experiments. The instability appears to be elliptical in nature with the perturbation field mainly restricted to the cores of the shed rollers and showing the spatial vorticity distribution expected for that instability type. Indeed an estimate of the theoretical predicted wavelength is also a good match to the prediction from Floquet analysis and theoretical estimates indicate the growth rate is positive. Fully three-dimensional simulations are also undertaken to explore the nonlinear development of the three-dimensional instability. These show the development of the characteristic upright hairpins observed in the experimental dye visualisations. The three-dimensional instability that manifests at lower Reynolds numbers is shown to be consistent with an elliptic instability of the KH shear-layer vortices in both symmetry and spanwise wavelength.


1971 ◽  
Vol 47 (1) ◽  
pp. 171-181 ◽  
Author(s):  
G. S. Janowitz

We consider the two-dimensional flow produced by the slow horizontal motion of a vertical plate of height 2b through a vertically stratified (ρ = ρ0(1 - βz)) non-diffusive viscous fluid. Our results are valid when U2 [Lt ] Ub/ν [Lt ] 1, where U is the speed of the plate and ν the kinematic viscosity of the fluid. Upstream of the body we find a blocking column of length 10−2b4/(Uν/βg. This column is composed of cells of closed streamlines. The convergence of these cells near the tips of the plate leads to alternate jets. The plate itself is embedded in a vertical shear layer of thickness (Uν/βg)1/3. In the upstream portion of this layer the vertical velocities are of order U and in the downstream portion of order Ub/(Uν/βg)1/3 ([Gt ] U). The flow is uniform and undisturbed downstream of this layer.


Sign in / Sign up

Export Citation Format

Share Document