Organic Molecules in the Interstellar Medium

2004 ◽  
pp. 17-31 ◽  
Author(s):  
T J Millar
2020 ◽  
Vol 500 (1) ◽  
pp. 1188-1200
Author(s):  
Killian Leroux ◽  
Lahouari Krim

ABSTRACT Methanol, which is one of the most abundant organic molecules in the interstellar medium, plays an important role in the complex grain surface chemistry that is believed to be a source of many organic compounds. Under energetic processing such as ultraviolet (UV) photons or cosmic rays, methanol may decompose into CH4, CO2, CO, HCO, H2CO, CH3O and CH2OH, which in turn lead to complex organic molecules such as CH3OCHO, CHOCH2OH and HOCH2CH2OH through radical recombination reactions. However, although molecular oxygen and its detection, abundance and role in the interstellar medium have been the subject of many debates, few experiments on the oxidation of organic compounds have been carried out under interstellar conditions. The present study shows the behaviour of solid methanol when treated by UV light and thermal processing in oxygen-rich environments. Methanol has been irradiated in the absence and presence of O2 at different concentrations in order to study how oxidized complex organic molecules may form and also to investigate the O-insertion reaction in the C–H bound to form methanediol HOCH2OH through a CH3OH + O(1D) solid-state reaction. The adding of O2 in the thermal and photochemical reaction of solid methanol leads to the formation of O3, H2O and HO2, in addition to three main organics, HCOOH, CHOCHO and HOCH2OH. We show that in an O2-rich environment, species such as CO, CH4, HCO, CH3OH and CHOCH2OH are oxidized into CO2, CH3OH, HC(O)OO, HOCH2OH and CHOCHO, respectively, while HCOOH might be formed through the H2CO + O(3P) → (OH + HCO)cage → HCOOH hydrogen-abstraction reaction.


2018 ◽  
Vol 610 ◽  
pp. A26 ◽  
Author(s):  
Flavio Siro Brigiano ◽  
Yannick Jeanvoine ◽  
Antonio Largo ◽  
Riccardo Spezia

Context. Many organic molecules have been observed in the interstellar medium thanks to advances in radioastronomy, and very recently the presence of urea was also suggested. While those molecules were observed, it is not clear what the mechanisms responsible to their formation are. In fact, if gas-phase reactions are responsible, they should occur through barrierless mechanisms (or with very low barriers). In the past, mechanisms for the formation of different organic molecules were studied, providing only in a few cases energetic conditions favorable to a synthesis at very low temperature. A particularly intriguing class of such molecules are those containing one N–C–O peptide bond, which could be a building block for the formation of biological molecules. Urea is a particular case because two nitrogen atoms are linked to the C–O moiety. Thus, motivated also by the recent tentative observation of urea, we have considered the synthetic pathways responsible to its formation. Aims. We have studied the possibility of forming urea in the gas phase via different kinds of bi-molecular reactions: ion-molecule, neutral, and radical. In particular we have focused on the activation energy of these reactions in order to find possible reactants that could be responsible for to barrierless (or very low energy) pathways. Methods. We have used very accurate, highly correlated quantum chemistry calculations to locate and characterize the reaction pathways in terms of minima and transition states connecting reactants to products. Results. Most of the reactions considered have an activation energy that is too high; but the ion-molecule reaction between NH2OHNH2OH2+ and formamide is not too high. These reactants could be responsible not only for the formation of urea but also of isocyanic acid, which is an organic molecule also observed in the interstellar medium.


2018 ◽  
Vol 615 ◽  
pp. A176 ◽  
Author(s):  
C. Degli Esposti ◽  
L. Dore ◽  
C. Puzzarini ◽  
M. Biczysko ◽  
J. Bloino ◽  
...  

Context. To date, several complex organic molecules have been detected in the interstellar medium, and they have been suggested as precursors of biologically important species. Propargylamine (HC ≡C−CH2−NH2) is structurally similar to a number of other organic molecules which have already been identified by radioastronomy, making it a good candidate for astrophysical detection. Aims. This work provides accurate rest frequencies of propargylamine, from the centimeter-wave to the submillimeter-wave region, useful to facilitate the detection of this molecule in the interstellar medium. Methods. An extensive laboratory study of the rotational spectrum of propargylamine has been performed using a pulsed-jet Fourier Transform Microwave (FTMW) spectrometer (7–19 GHz frequency range) and a frequency modulation microwave spectrometer (75–560 GHz). Several hundred rotational transitions of propargylamine were recorded in the ground and three lowest excited vibrational states. The experiments were supported by high-level ab initio computations, mainly employed to characterize the vibrational state structure and to predict spectroscopic parameters unknown prior to this study. Results. The measured transition frequencies yielded accurate rotational constants and the complete sets of quartic and sextic centrifugal distortion constants for propargylamine in its vibrational ground state. 14N-nuclear quadrupole coupling constants were also determined. Rotational and quartic centrifugal distortion constants were also obtained for the low-lying excited states v13 = 1 (A′), v20 = 1 (A″), and v21 = 1 (A″). The a-type Coriolis resonance which couples the v13 = 1 and v21 = 1 levels was analyzed. Conclusions. The determined spectroscopic constants allowed for the compilation of a dataset of highly accurate rest frequencies for astrophysical purposes in the millimeter and submillimeter regions with 1σ uncertainties that are smaller than 0.050 MHz, corresponding to 0.03 km s−1 at 500 GHz in radial equivalent velocity.


2008 ◽  
Vol 4 (S251) ◽  
pp. 47-48 ◽  
Author(s):  
C. Knez ◽  
M. Moore ◽  
S. Travis ◽  
R. Ferrante ◽  
J. Chiar ◽  
...  

AbstractWe present 5–20 μm Spitzer/IRS spectroscopy toward stars behind dark molecular clouds. We present preliminary results from the Serpens dark cloud to show the variation between environments within a cloud. We are surveying 3 clouds with varying levels of star formation activity. Serpens has the highest level of activity from our 3 clouds. We show that location as well extinction can cause variations in ice composition. We also find that some lines of sight contain organic molecules such as methane and methanol, and the first detection of acetylene ice in the interstellar medium. We believe the high extinction lines of sight have been enriched by star formation activity near those lines of sight.


2011 ◽  
pp. 85-97
Author(s):  
Cecilia Ceccarelli ◽  
José Cernicharo

2014 ◽  
Vol 168 ◽  
pp. 103-127 ◽  
Author(s):  
Viviana V. Guzmán ◽  
Jérôme Pety ◽  
Pierre Gratier ◽  
Javier R. Goicoechea ◽  
Maryvonne Gerin ◽  
...  

The interstellar medium is known to be chemically complex. Organic molecules with up to 11 atoms have been detected in the interstellar medium, and are believed to be formed on the ices around dust grains. The ices can be released into the gas-phase either through thermal desorption, when a newly formed star heats the medium around it and completely evaporates the ices; or through non-thermal desorption mechanisms, such as photodesorption, when a single far-UV photon releases only a few molecules from the ices. The first mechanism dominates in hot cores, hot corinos and strongly UV-illuminated PDRs, while the second dominates in colder regions, such as low UV-field PDRs. This is the case of the Horsehead were dust temperatures are ≃20–30 K, and therefore offers a clean environment to investigate the role of photodesorption. We have carried out an unbiased spectral line survey at 3, 2 and 1mm with the IRAM-30m telescope in the Horsehead nebula, with an unprecedented combination of bandwidth, high spectral resolution and sensitivity. Two positions were observed: the warm PDR and a cold condensation shielded from the UV field (dense core), located just behind the PDR edge. We summarize our recently published results from this survey and present the first detection of the complex organic molecules HCOOH, CH2CO, CH3CHO and CH3CCH in a PDR. These species together with CH3CN present enhanced abundances in the PDR compared to the dense core. This suggests that photodesorption is an efficient mechanism to release complex molecules into the gas-phase in far-UV illuminated regions.


2012 ◽  
Vol 10 (H16) ◽  
pp. 697-698 ◽  
Author(s):  
Sun Kwok

AbstractWe present an overview of the present observational status of unexplained spectral phenomena in the ISM. The possibility of organic molecules and solids as the carrier of the DIB, 217 nm feature, ERE, UIR, and the 21 and 30 μm features is discussed.


Sign in / Sign up

Export Citation Format

Share Document