Froude number (Fr)

Author(s):  
P. G. Holland
Keyword(s):  
1977 ◽  
Vol 12 (1) ◽  
pp. 77-90
Author(s):  
J.F. Cordoba-Molina ◽  
P.L. Silveston ◽  
R. R. Hudgins

Abstract A simple Flow Model is proposed to describe the dynamic response of sedimentation basins. The response predicted by this model is linear as opposed to the real response of the basin which is nonlinear. However, the real response of the basin is highly correlated with its densimetric Froude number, and as a consequence our linear model effectively predicts the response of the basin in a restricted densimetric Froude Number range. Our experiments show that the response of the basin becomes more sluggish and erratic as the densimetric Froude number decreases.


1997 ◽  
Vol 62 (11) ◽  
pp. 1698-1709
Author(s):  
Miloslav Hartman ◽  
Zdeněk Beran ◽  
Václav Veselý ◽  
Karel Svoboda

The onset of the aggregative mode of liquid-solid fluidization was explored. The experimental findings were interpreted by means of the dynamic (elastic) wave velocity and the voidage propagation (continuity) wave velocity. For widely different systems, the mapping of regimes has been presented in terms of the Archimedes number, the Froude number and the fluid-solid density ratio. The proposed diagram also depicts the typical Geldart's Group A particles fluidized with air.


2019 ◽  
Vol 97 ◽  
pp. 05006
Author(s):  
Yuliya Bryanskaya ◽  
Aleksandra Ostiakova

For the solution of engineering problems require increasingly accurate estimates of the hydraulic characteristics of the water streams. To date, it is impossible to consider sufficiently complete theoretical and experimental justification of the main provisions of the theory of turbulence, hydraulic resistance, channel processes. The composition of tasks related to flows in wide channels, turbulence problems are of scientific and practical interest. Various interpretations of the determination of the critical Froude number in wide open water flows based on observations and theoretical transformations are considered. The conditions for the emergence of a critical regime of water flow in an open wide channel are analyzed in order to estimate the critical Froude number and critical depth. Estimates of the critical Froude number for laboratory and field conditions are given. The estimations allow us to consider the proposed approach acceptable for determining the conditions of occurrence of the critical flow regime. The General, physical interpretation of conditions of occurrence of the critical regime of water flow on the basis of phenomenological approach is specified. The results take into account the values of the components of the total specific energy of the section. This shows the estimated calculation. The results obtained theoretically make it possible to compare the above interpretations and determine their applicability, and the results of the analysis can be useful for the estimated calculations of flows in channels and river flows in rigid, undeformable boundaries and with minor channel deformations.


2000 ◽  
Vol 406 ◽  
pp. 337-346 ◽  
Author(s):  
L. ENGEVIK

The instabilities of a free surface shear flow are considered, with special emphasis on the shear flow with the velocity profile U* = U*0sech2 (by*). This velocity profile, which is found to model very well the shear flow in the wake of a hydrofoil, has been focused on in previous studies, for instance by Dimas & Triantyfallou who made a purely numerical investigation of this problem, and by Longuet-Higgins who simplified the problem by approximating the velocity profile with a piecewise-linear profile to make it amenable to an analytical treatment. However, none has so far recognized that this problem in fact has a very simple solution which can be found analytically; that is, the stability boundaries, i.e. the boundaries between the stable and the unstable regions in the wavenumber (k)–Froude number (F)-plane, are given by simple algebraic equations in k and F. This applies also when surface tension is included. With no surface tension present there exist two distinct regimes of unstable waves for all values of the Froude number F > 0. If 0 < F [Lt ] 1, then one of the regimes is given by 0 < k < (1 − F2/6), the other by F−2 < k < 9F−2, which is a very extended region on the k-axis. When F [Gt ] 1 there is one small unstable region close to k = 0, i.e. 0 < k < 9/(4F2), the other unstable region being (3/2)1/2F−1 < k < 2 + 27/(8F2). When surface tension is included there may be one, two or even three distinct regimes of unstable modes depending on the value of the Froude number. For small F there is only one instability region, for intermediate values of F there are two regimes of unstable modes, and when F is large enough there are three distinct instability regions.


2014 ◽  
Vol 70 (5) ◽  
pp. 871-877 ◽  
Author(s):  
Fahri Ozkan ◽  
M. Cihat Tuna ◽  
Ahmet Baylar ◽  
Mualla Ozturk

Oxygen is an important component of water quality and its ability to sustain life. Water aeration is the process of introducing air into a body of water to increase its oxygen saturation. Water aeration can be accomplished in a variety of ways, for instance, closed-conduit aeration. High-speed flow in a closed conduit involves air-water mixture flow. The air flow results from the subatmospheric pressure downstream of the gate. The air entrained by the high-speed flow is supplied by the air vent. The air entrained into the flow in the form of a large number of bubbles accelerates oxygen transfer and hence also increases aeration efficiency. In the present work, the optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits was studied experimentally. Results showed that aeration efficiency increased with the air-demand ratio to a certain point and then aeration efficiency did not change with a further increase of the air-demand ratio. Thus, there was an optimum value for the air-demand ratio, depending on the Froude number, which provides maximum aeration efficiency. Furthermore, a design formula for aeration efficiency was presented relating aeration efficiency to the air-demand ratio and Froude number.


2011 ◽  
Vol 20 (5) ◽  
pp. 657 ◽  
Author(s):  
Wesley J. Cole ◽  
McKaye H. Dennis ◽  
Thomas H. Fletcher ◽  
David R. Weise

Individual cuttings from five shrub species were burned over a flat-flame burner under wind conditions of 0.75–2.80 m s–1. Both live and dead cuttings were used. These included single leaves from broadleaf species as well as 3 to 5 cm-long branches from coniferous and small broadleaf species. Flame angles and flame lengths were determined by semi-automated measurements of video images. Additional data, such as times and temperatures corresponding to ignition, maximum flame height and burnout were determined using video and infrared images. Flame angles correlated linearly with wind velocity. They also correlated with the Froude number when either the flame length or flame height was used. Flame angles in individual leaf experiments were generally 50 to 70% less than flame angles derived from Froude number correlations reported in the literature for fuel-bed experiments. Although flame angles increased with fuel mass and moisture content, they were unaffected by fuel species. Flame lengths and flame heights decreased with moisture contents and wind speed but increased with mass. In most cases, samples burned with wind conditions ignited less quickly and at lower temperatures than samples burned without wind. Most samples contained moisture at the time of ignition. Results of this small-scale approach (e.g. using individual cuttings) apply to ignition of shrubs and to flame propagation in shrubs of low bulk density. This research is one of the few attempts to characterise single-leaf and small-branch combustion behaviour in wind and is crucial to the continued development of a semi-empirical shrub combustion model.


Sign in / Sign up

Export Citation Format

Share Document