Learning Geometric 3D Facial Motion Model

Keyword(s):  
2010 ◽  
Vol 20 (2) ◽  
pp. 29-36
Author(s):  
Erin M. Wilson ◽  
Ignatius S. B. Nip

Abstract Although certain speech development milestones are readily observable, the developmental course of speech motor control is largely unknown. However, recent advances in facial motion tracking systems have been used to investigate articulator movements in children and the findings from these studies are being used to further our understanding of the physiologic basis of typical and disordered speech development. Physiologic work has revealed that the emergence of speech is highly dependent on the lack of flexibility in the early oromotor system. It also has been determined that the progression of speech motor development is non-linear, a finding that has motivated researchers to investigate how variables such as oromotor control, cognition, and linguistic factors affect speech development in the form of catalysts and constraints. Physiologic data are also being used to determine if non-speech oromotor behaviors play a role in the development of speech. This improved understanding of the physiology underlying speech, as well as the factors influencing its progression, helps inform our understanding of speech motor control in children with disordered speech and provide a framework for theory-driven therapeutic approaches to treatment.


1991 ◽  
Author(s):  
R. N. Forrest ◽  
J. N. Eagle

Author(s):  
Panagiotis Tzirakis ◽  
Athanasios Papaioannou ◽  
Alexandros Lattas ◽  
Michail Tarasiou ◽  
Bjorn Schuller ◽  
...  
Keyword(s):  

Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1135
Author(s):  
Cheng ◽  
Shen ◽  
Deng ◽  
Deng

Spin-stabilized projectiles with course correction fuzes actuated by fixed canards have the problem of great coupling in both the normal and lateral directions due to intensive gyroscopic effects, which leads to inconsistent maneuverability in different directions. Due to the limited correction ability, which results from the miniaturization of the fuze and fixed canards, a target-aiming method is proposed here to make full use of the correction ability of the canards. From analysis on how the canards work and building an angular motion model, the correction characteristics of a spinning projectile with fixed canards have been studied, and the inconsistent maneuverability in different directions of the projectile has been explained and used to help establish the proposed target aiming method. Hardware-in-the-loop simulation based on a 155 mm howitzer shows that when the correction ability of fixed canards is unchanged, the proposed method can improve the striking accuracy by more than 20% when compared to the traditional method.


Author(s):  
Fabio Sabetta ◽  
Antonio Pugliese ◽  
Gabriele Fiorentino ◽  
Giovanni Lanzano ◽  
Lucia Luzi

AbstractThis work presents an up-to-date model for the simulation of non-stationary ground motions, including several novelties compared to the original study of Sabetta and Pugliese (Bull Seism Soc Am 86:337–352, 1996). The selection of the input motion in the framework of earthquake engineering has become progressively more important with the growing use of nonlinear dynamic analyses. Regardless of the increasing availability of large strong motion databases, ground motion records are not always available for a given earthquake scenario and site condition, requiring the adoption of simulated time series. Among the different techniques for the generation of ground motion records, we focused on the methods based on stochastic simulations, considering the time- frequency decomposition of the seismic ground motion. We updated the non-stationary stochastic model initially developed in Sabetta and Pugliese (Bull Seism Soc Am 86:337–352, 1996) and later modified by Pousse et al. (Bull Seism Soc Am 96:2103–2117, 2006) and Laurendeau et al. (Nonstationary stochastic simulation of strong ground-motion time histories: application to the Japanese database. 15 WCEE Lisbon, 2012). The model is based on the S-transform that implicitly considers both the amplitude and frequency modulation. The four model parameters required for the simulation are: Arias intensity, significant duration, central frequency, and frequency bandwidth. They were obtained from an empirical ground motion model calibrated using the accelerometric records included in the updated Italian strong-motion database ITACA. The simulated accelerograms show a good match with the ground motion model prediction of several amplitude and frequency measures, such as Arias intensity, peak acceleration, peak velocity, Fourier spectra, and response spectra.


1987 ◽  
Vol 74 (2) ◽  
pp. 271-287 ◽  
Author(s):  
J. R. Norris ◽  
L. C. G. Rogers ◽  
David Williams

Sign in / Sign up

Export Citation Format

Share Document