scholarly journals Universal Deformation Formulae for Three-Dimensional Solvable Lie Groups

Author(s):  
P. Bieliavsky ◽  
P. Bonneau ◽  
Y. Maeda
2015 ◽  
Vol 27 (4) ◽  
Author(s):  
Fabrice Baudoin ◽  
Matthew Cecil

AbstractWe study the subelliptic heat kernels of the CR three-dimensional solvable Lie groups. We first classify all left-invariant sub-Riemannian structures on three-dimensional solvable Lie groups and obtain representations of these groups. We give expressions for the heat kernels on these groups and obtain heat semigroup gradient bounds using a new type of curvature-dimension inequality.


Author(s):  
Á. FIGULA ◽  
A. AL-ABAYECHI

Abstract We prove that the solvability of the multiplication group Mult(L) of a connected simply connected topological loop L of dimension three forces that L is classically solvable. Moreover, L is congruence solvable if and only if either L has a non-discrete centre or L is an abelian extension of a normal subgroup ℝ by the 2-dimensional nonabelian Lie group or by an elementary filiform loop. We determine the structure of indecomposable solvable Lie groups which are multiplication groups of three-dimensional topological loops. We find that among the six-dimensional indecomposable solvable Lie groups having a four-dimensional nilradical there are two one-parameter families and a single Lie group which consist of the multiplication groups of the loops L. We prove that the corresponding loops are centrally nilpotent of class 2.


2017 ◽  
Vol 28 (06) ◽  
pp. 1750048 ◽  
Author(s):  
Takahiro Hashinaga ◽  
Hiroshi Tamaru

In this paper, we define the corresponding submanifolds to left-invariant Riemannian metrics on Lie groups, and study the following question: does a distinguished left-invariant Riemannian metric on a Lie group correspond to a distinguished submanifold? As a result, we prove that the solvsolitons on three-dimensional simply-connected solvable Lie groups are completely characterized by the minimality of the corresponding submanifolds.


2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Ameer Al-Abayechi ◽  
Ágota Figula

AbstractIn this paper we deal with the class $$\mathcal {C}$$ C of decomposable solvable Lie groups having dimension six. We determine those Lie groups in $$\mathcal {C}$$ C and their subgroups which are the multiplication groups Mult(L) and the inner mapping groups Inn(L) for three-dimensional connected simply connected topological loops L. This result completes the classification of the at most 6-dimensional solvable multiplication Lie groups of the loops L. Moreover, we obtain that every at most 3-dimensional connected topological proper loop having a solvable Lie group of dimension at most six as its multiplication group is centrally nilpotent of class two.


Author(s):  
A. L. Carey ◽  
W. Moran

AbstractLet G be a second countable locally compact group possessing a normal subgroup N with G/N abelian. We prove that if G/N is discrete then G has T1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on connected and simply connected solvable Lie groups where it is equivalent to the condition of Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie group then Prim G is T1 whenever G-quasiorbits in [G, G] are closed.


2009 ◽  
Vol 61 (3) ◽  
pp. 349-364 ◽  
Author(s):  
Nobuo Tsuchiya ◽  
Aiko Yamakawa

1993 ◽  
Vol 163 (1) ◽  
pp. 151-162 ◽  
Author(s):  
Saverio Giulini ◽  
Giancarlo Mauceri

Author(s):  
Pavel Nikolaevich Klepikov ◽  
◽  
Evgeny Dmitrievich Rodionov ◽  
Olesya Pavlovna Khromova ◽  
◽  
...  

2017 ◽  
Vol 17 (3) ◽  
Author(s):  
Giovanni Calvaruso ◽  
Antonella Perrone

AbstractWe study left-invariant almost paracontact metric structures on arbitrary three-dimensional Lorentzian Lie groups. We obtain a complete classification and description under a natural assumption, which includes relevant classes as normal and almost para-cosymplectic structures, and we investigate geometric properties of these structures.


Sign in / Sign up

Export Citation Format

Share Document