scholarly journals A Two-Phase Scheduling Algorithm for Efficient Collective Communications of MPICH-G2

Author(s):  
Junghee Lee ◽  
Dongsoo Han
2016 ◽  
Vol E99.D (9) ◽  
pp. 2377-2380
Author(s):  
Byungnam LIM ◽  
Yeeun SHIM ◽  
Yon Dohn CHUNG

2016 ◽  
Vol 33 (6) ◽  
pp. 1753-1766 ◽  
Author(s):  
Chin-Fu Kuo ◽  
Yung-Feng Lu ◽  
Bao-Rong Chang

Purpose – The purpose of this paper is to investigate the scheduling problem of real-time jobs executing on a DVS processor. The jobs must complete their executions by their deadlines and the energy consumption also must be minimized. Design/methodology/approach – The two-phase energy-efficient scheduling algorithm is proposed to solve the scheduling problem for real-time jobs. In the off-line phase, the maximum instantaneous total density and instantaneous total density (ITD) are proposed to derive the speed of the processor for each time instance. The derived speeds are saved for run time. In the on-line phase, the authors set the processor speed according to the derived speeds and set a timer to expire at the corresponding end time instance of the used speed. Findings – When the DVS processor executes a job at a proper speed, the energy consumption of the system can be minimized. Research limitations/implications – This paper does not consider jobs with precedence constraints. It can be explored in the further work. Practical implications – The experimental results of the proposed schemes are presented to show the effectiveness. Originality/value – The experimental results show that the proposed scheduling algorithm, ITD, can achieve energy saving and make the processor fully utilized.


Author(s):  
K. P. Staudhammer ◽  
L. E. Murr

The effect of shock loading on a variety of steels has been reviewed recently by Leslie. It is generally observed that significant changes in microstructure and microhardness are produced by explosive shock deformation. While the effect of shock loading on austenitic, ferritic, martensitic, and pearlitic structures has been investigated, there have been no systematic studies of the shock-loading of microduplex structures.In the current investigation, the shock-loading response of millrolled and heat-treated Uniloy 326 (thickness 60 mil) having a residual grain size of 1 to 2μ before shock loading was studied. Uniloy 326 is a two phase (microduplex) alloy consisting of 30% austenite (γ) in a ferrite (α) matrix; with the composition.3% Ti, 1% Mn, .6% Si,.05% C, 6% Ni, 26% Cr, balance Fe.


Author(s):  
P.P.K. Smith

Grains of pigeonite, a calcium-poor silicate mineral of the pyroxene group, from the Whin Sill dolerite have been ion-thinned and examined by TEM. The pigeonite is strongly zoned chemically from the composition Wo8En64FS28 in the core to Wo13En34FS53 at the rim. Two phase transformations have occurred during the cooling of this pigeonite:- exsolution of augite, a more calcic pyroxene, and inversion of the pigeonite from the high- temperature C face-centred form to the low-temperature primitive form, with the formation of antiphase boundaries (APB's). Different sequences of these exsolution and inversion reactions, together with different nucleation mechanisms of the augite, have created three distinct microstructures depending on the position in the grain.In the core of the grains small platelets of augite about 0.02μm thick have farmed parallel to the (001) plane (Fig. 1). These are thought to have exsolved by homogeneous nucleation. Subsequently the inversion of the pigeonite has led to the creation of APB's.


Author(s):  
Naresh N. Thadhani ◽  
Thad Vreeland ◽  
Thomas J. Ahrens

A spherically-shaped, microcrystalline Ni-Ti alloy powder having fairly nonhomogeneous particle size distribution and chemical composition was consolidated with shock input energy of 316 kJ/kg. In the process of consolidation, shock energy is preferentially input at particle surfaces, resulting in melting of near-surface material and interparticle welding. The Ni-Ti powder particles were 2-60 μm in diameter (Fig. 1). About 30-40% of the powder particles were Ni-65wt% and balance were Ni-45wt%Ti (estimated by EMPA).Upon shock compaction, the two phase Ni-Ti powder particles were bonded together by the interparticle melt which rapidly solidified, usually to amorphous material. Fig. 2 is an optical micrograph (in plane of shock) of the consolidated Ni-Ti alloy powder, showing the particles with different etching contrast.


Sign in / Sign up

Export Citation Format

Share Document